1,169
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

A Small Subfamily of Arabidopsis RADIALIS-LIKE SANT/MYB Genes: A Link to HOOKLESS1-Mediated Signal Transduction during Early Morphogenesis

, , , , , & show all
Pages 2687-2696 | Received 21 May 2008, Accepted 25 Jun 2008, Published online: 22 May 2014

  • 1) Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K., and Yu, G., Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110 (2000).
  • 2) Yanhui, C., Xiaoyuan, Y., Kun, H., Meihua, L., Jigang, L., Zhaofeng, G., Zhiqiang, L., Yunfei, Z., Xiaoxiao, W., Xiaoming, Q., Yunping, S., Li, Z., Xiaohui, D., Jingchu, L., Xing-Wang, D., Zhangliang, C., Hongya, G., and Li-Jia, Q., The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol., 60, 107–124 (2006).
  • 3) Weston, K., Myb proteins in life, death and differentiation. Curr. Opin. Genet. Dev., 8, 76–81 (1998).
  • 4) Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., and Kay, S. A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 293, 880–883 (2001).
  • 5) Denekamp, M., and Smeekens, S. C., Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol., 132, 1415–1423 (2003).
  • 6) Ito, M., Araki, S., Matsunaga, S., Itoh, T., Nishihama, R., Machida, Y., Doonan, J. H., and Watanabe, A., G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell, 13, 1891–1905 (2001).
  • 7) Lee, M. M., and Schiefelbein, J., Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development, 128, 1539–1546 (2001).
  • 8) Lee, M. M., and Schiefelbein, J., Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell, 14, 611–618 (2002).
  • 9) Seo, H. S., Yang, J.-Y., Ishikawa, M., Bolle, C., Ballesteros, M. L., and Chua, N.-H., LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 423, 995–999 (2003).
  • 10) Baxter, C. E. L., Costa, M. M. R., and Coen, E. S., Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J., 52, 105–113 (2007).
  • 11) Costa, M. M. R., Fox, S., Hanna, A. I., Baxter, C., and Coen, E., Evolution of regulatory interactions controlling floral asymmetry. Development, 132, 5093–5101 (2005).
  • 12) Corley, S. B., Carpenter, R., Copsey, L., and Coen, E., Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc. Natl. Acad. Sci. USA, 102, 5068–5073 (2005).
  • 13) Kojima, S., Banno, H., Yoshioka, Y., Oka, A., Machida, C., and Machida, Y., A binary vector plasmid for gene expression in plant cells that is stably maintained in Agrobacterium cells. DNA Res., 6, 407–410 (1999).
  • 14) Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J. D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M., and Goff, S. A., A high-throughput Arabidopsis reverse genetics system. Plant Cell, 14, 2985–2994 (2002).
  • 15) Rosso, M. G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., and Weisshaar, B., An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol. Biol., 53, 247–259 (2003).
  • 16) Lehman, A., Black, R., and Ecker, J. R., HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell, 85, 183–194 (1996).
  • 17) Chang, C., Kwok, S. F., Bleecker, A. B., and Meyerowitz, E. M., Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539–544 (1993).
  • 18) Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T. J., Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 9, 1963–1971 (1997).
  • 19) Donnelly, P. M., Bonetta, D., Tsukaya, H., Dengler, R. E., and Dengler, N. G., Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev. Biol., 215, 407–419 (1999).
  • 20) Dobrev, P. I., and Kamínek, M., Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A, 950, 21–29 (2002).
  • 21) Wang, Z.-Y., and Tobin, E. M., Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 93, 1207–1217 (1998).
  • 22) Wada, T., Tachibana, T., Shimura, Y., and Okada, K., Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science, 277, 1113–1116 (1997).
  • 23) Wada, T., Kurata, T., Tominaga, R., Koshino-Kimura, Y., Tachibana, T., Goto, K., Marks, M. D., Shimura, Y., and Okada, K., Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development, 129, 5409–5419 (2002).
  • 24) Kuchar, M., and Fajkus, J., Interactions of putative telomere-binding proteins in Arabidopsis thaliana: identification of functional TRF2 homolog in plants. FEBS Lett., 578, 311–315 (2004).
  • 25) Li, H., Johnson, P., Stepanova, A., Alonso, J. M., and Ecker, J. R., Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell, 7, 193–204 (2004).
  • 26) Raz, V., and Ecker, J. R., Regulation of differential growth in the apical hook of Arabidopsis. Development, 126, 3661–3668 (1999).
  • 27) Hou, Y., von Arnim, A. G., and Deng, X.-W., A new class of Arabidopsis constitutive photomorphogenic genes involved in regulating cotyledon development. Plant Cell, 5, 329–339 (1993).
  • 28) Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., and Provart, N. J., An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE, 2, e718 (2007).
  • 29) Kim, B. C., Soh, M. C., Kang, B. J., Furuya, M., and Nam, H. G., Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J., 9, 441–456 (1996).
  • 30) Park, J.-E., Kim, Y.-S., Yoon, H.-K., and Park, C.-M., Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Sci., 172, 150–157 (2007).
  • 31) Park, J.-E., Seo, P. J., Lee, A.-K., Jung, J.-H., Kim, Y.-S., and Park, C.-M., An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth. Plant Cell Physiol., 48, 1236–1241 (2007).
  • 32) Tian, Q., and Reed, J. W., Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development, 126, 711–721 (1999).
  • 33) Swarup, R., Parry, G., Graham, N., Allen, T., and Bennett, M., Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol. Biol., 49, 411–426 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.