251
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Structural Determination and Functional Analysis of a Soluble Matrix Protein Associated with Calcification of the Exoskeleton of the Crayfish, Procambarus clarkii

, , &
Pages 2697-2707 | Received 21 May 2008, Accepted 09 Jul 2008, Published online: 22 May 2014

  • 1) Simkiss, K., and Wilbur, K. M., “Biomineralization,” Academic Press, San Diego, pp. 3–10 (1989).
  • 2) Weiner, S., and Addadi, L., Acidic macromolecules of mineralized tissues: the controls of crystal formation. Trends Biochem. Sci., 16, 252–257 (1991).
  • 3) Roer, R. D., Mechanisms of resorption and deposition of calcium in the carapace of the crab Carcinus maenas. J. Exp. Biol., 88, 205–218 (1980).
  • 4) Roer, R. D., and Dillaman, R., The structure and calcification of the crustacean cuticle. Am. Zool., 24, 893–909 (1984).
  • 5) Simkiss, K., and Wilbur, K. M., “Biomineralization,” Academic Press, San Diego, pp. 205–211 (1989).
  • 6) Dillaman, R., Hequembourg, S., and Gay, M., Early pattern of calcification in the dorsal carapace of the blue crab Callinectes sapidus. J. Morphol., 263, 356–374 (2005).
  • 7) Testeniere, O., Hecker, A., Le Gurun, S., Quennedey, B., Graf, F., and Luquet, G., Characterization and spatiotemporal expression of orchestin, a gene encoding an ecdysone-inducible protein from a crustacean organic matrix. Biochem. J., 361, 327–335 (2002).
  • 8) Travis, D. F., The deposition of skeletal structures in the Crustacea. I. The histology of the gastrolith skeletal tissue complex and the gastrolith in the crayfish, Orconectes (cambarus) verilis Hagen-Decapoda. Biol. Bull., 118, 137–149 (1960).
  • 9) Andersen, S. O., Hojrup, P., and Roepstorff, P., Insect cuticular proteins. Insect Biochem. Mol. Biol., 25, 411–423 (1995).
  • 10) Inoue, H., Ozaki, N., and Nagasawa, H., Purification and structural determination of a phosphorylated peptide with anti-calcification and chitin binding activities in the exoskeleton of the crayfish, Procambarus clarkii. Biosci. Biotechnol. Biochem., 65, 1840–1848 (2001).
  • 11) Inoue, H., Ohira, T., Ozaki, N., and Nagasawa, H., Cloning and expression of a cDNA encoding a matrix peptide associated with calcification in the exoskeleton of the crayfish. Comp. Biochem. Physiol. B, 136, 755–765 (2003).
  • 12) Inoue, H., Ohira, T., Ozaki, N., and Nagasawa, H., A novel calcium-binding peptide from the cuticle of the crayfish, Procambarus clarkii. Biochem. Biophys. Res. Commun., 318, 649–654 (2004).
  • 13) Inoue, H., Ohira, T., and Nagasawa, H., Significance of the N- and C-terminal regions of CAP-1, a cuticle calcification-associated peptide from the exoskeleton of the crayfish, for calcification. Peptides, 28, 566–573 (2007).
  • 14) Endo, H., Persson, P., and Watanabe, T., Molecular cloning of the crustacean DD4 cDNA encoding a Ca2+-binding protein. Biochem. Biophys. Res. Commun., 276, 286–291 (2000).
  • 15) Ikeya, T., Persson, P., Kono, M., and Watanabe, T., The DD5 gene of the decapod crustacean Penaeus japonicus encodes a putative exoskeletal protein with a novel tandem repeat structure. Comp. Biochem. Physiol. B, 128, 379–388 (2001).
  • 16) Wynn, A., and Shafer, T. H., Four differentially expressed cDNAs in Callinectes sapidus containing Rebers-Riddiford consensus sequence. Comp. Biochem. Physiol. B, 141, 294–306 (2005).
  • 17) Shafer, T. H., McCartney, M. A., and Faircloth, L. M., Identifying exoskeleton proteins in the blue crab from an expressed sequence tag (EST) library. Integr. Comp. Biol., 46, 978–990 (2006).
  • 18) Rebers, J. E., and Riddiford, L. M., Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle gene. J. Mol. Biol., 203, 411–423 (1988).
  • 19) Faircloth, L. N., and Shafer, T. H., Differential expression of eight transcripts and their roles in the cuticle of the blue crab, Callinectes sapidus. Comp. Biochem. Physiol. B, 146, 370–383 (2007).
  • 20) Andersen, S. O., Exoskeletal proteins from the crab, Cancer pugrus. Comp. Biochem. Physiol. A, 123, 203–211 (1999).
  • 21) Wheeler, A. P., and Sikes, C. S., Matrix-crystal interactions in CaCO3 biomineralization. In “Biomineralization,” eds. Mann, S., Webb, J., and Williams, R. J. P., VCH Publishers, New York, pp. 95–131 (1989).
  • 22) Suzuki, M., Murayama, E., Inoue, H., Ozaki, O., Tohse, H., Kogure, T., and Nagasawa, H., Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem. J., 382, 205–213 (2004).
  • 23) Suzuki, M., and Nagasawa, H., The structure-function relationship analysis of Prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. FEBS J., 274, 5158–5166 (2007).
  • 24) Kuballa, A. V., Merritt, D. J., and Elizur, A., Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus. BMC Biol., 5, 45 (2007).
  • 25) Rebers, J. E., and Willis, J. H., A conserved domain in arthropod cuticular proteins bind chitin. Insect Biochem. Mol. Biol., 31, 1083–1093 (2001).
  • 26) Iconomidou, V. A., Willia, J. H., and Hamodrakas, S. J., Is beta-pleated sheet the molecular conformation which dictates formation of helicoidal cuticle? Insect Biochem. Mol. Biol., 275, 285–292 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.