498
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Local Anesthetics, Antipsychotic Phenothiazines, and Cationic Surfactants Shut Down Intracellular Reactions through Membrane Perturbation in Yeast

, &
Pages 2884-2894 | Received 09 Jun 2008, Accepted 15 Jul 2008, Published online: 22 May 2014

  • 1) Ashe, M. P., De Long, S. K., and Sachs, A. B., Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell, 11, 833–848 (2000).
  • 2) Chowdhury, S., Smith, K. W., and Gustin, M. C., Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J. Cell Biol., 118, 561–571 (1992).
  • 3) Delley, P. A., and Hall, M. N., Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol., 147, 163–174 (1999).
  • 4) Uesono, Y., Ashe, M. P., and Toh-e, A., Simultaneous yet independent regulation of actin cytoskeletal organization and translation initiation by glucose in Saccharomyces cerevisiae. Mol. Biol. Cell, 15, 1544–1556 (2004).
  • 5) Uesono, Y., and Toh-e, A., Transient inhibition of translation initiation by osmotic stress. J. Biol. Chem., 277, 13848–13855 (2002).
  • 6) Butterworth, J. F., and Strichartz, G. R., Molecular mechanisms of local anesthesia. Anesthesiology, 72, 711–734 (1990).
  • 7) Nau, C., and Wang, G. K., Interactions of local anesthetics with voltage-gated Na+ channels. J. Membr. Biol., 201, 1–8 (2004).
  • 8) Seeman, P., The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev., 24, 583–655 (1972).
  • 9) Smith, I. C. P., Auger, M., and Jarrell, H. C., Molecular details of anesthetic–lipid interaction. Ann. NY Acad. Sci., 625, 668–684 (1991).
  • 10) Seeman, P., Brain dopamine receptors. Pharmacol. Rev., 32, 229–313 (1980).
  • 11) Snyder, S. H., Banerjee, S. P., Yamamura, H. I., and Greenburg, D., Drugs, neurotransmitters and schizophrenia. Science, 184, 1243–1253 (1974).
  • 12) Ogata, N., Yoshii, M., and Narahashi, T., Psychotropic drugs block voltage-gated ion channels in neuroblstoma cells. Brain Res., 474, 140–144 (1989).
  • 13) Mozrzymas, J. W., Barberis, A., Michalak, K., and Cherubini, E., Chlorpromazine inhibits miniature GABAergic currents by reducing the binding and by increasing the unbinding rate of GABAA receptors. J. Neurosci., 19, 2474–2488 (1999).
  • 14) Lee, I. S., Park, T. J., Suh, B. C., Kim, Y. S., Rhee, I. J., and Kim, K. T., Chlorpromazine-induced inhibition of catecholamine secretion by a differential blockade of nicotinic receptors and L-type Ca2+ channels in rat pheochromocytoma cells. Biochem. Pharmacol., 58, 1017–1024 (1999).
  • 15) Schreier, S., Malheiros, S. V., and de Paula, E., Surface active drugs: self-association and interaction with membranes and surfactants: physicochemical and biological aspects. Biochim. Biophys. Acta, 1508, 210–234 (2000).
  • 16) Malheiros, S. V., Meirelles, N. C., and de Paula, E., Pathways involved in trifluoperazine-, dibucaine- and praziquantel-induced hemolysis. Biophys. Chem., 83, 89–100 (2000).
  • 17) Boon, J. M., and Smith, B. D., Chemical control of phospholipid distribution across bilayer membranes. Med. Res. Rev., 22, 251–281 (2002).
  • 18) Araki, T., Uesono, Y., Oguchi, T., and Toh-e, A., LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast. Genes Genet. Syst., 80, 325–343 (2005).
  • 19) Deloche, O., de la Cruz, J., Kressler, D., Doere, M., and Linder, P., A membrane transport defect leads to a rapid attenuation of translation initiation in Saccharomyces cerevisiae. Mol. Cell, 13, 357–366 (2004).
  • 20) Guthrie, C., and Fink, G. R., “Guide to Yeast Genetics and Molecular Biology” Vol. 194, Academic, New York (1991).
  • 21) Toh-e, A., Nakamura, H., and Oshima, Y., A gene controlling the synthesis of non-specific alkaline phosphatase in Saccharomyces cerevisiae. Biochim. Biophys. Acta, 428, 182–192 (1976).
  • 22) Görner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H., and Schuller, C., Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev., 12, 586–597 (1998).
  • 23) Görner, W., Durchschlag, E., Wolf, J., Brown, E. L., Ammerer, G., Ruis, H., and Schuller, C., Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J., 21, 135–144 (2002).
  • 24) Moskvina, E., Imre, E. M., and Ruis, H., Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae. Mol. Microbiol., 32, 1263–1272 (1999).
  • 25) Yokoyama, S., Correlation between pharmacological potency and micellar surface potential of local anesthetic. Toxicol. Lett., 100–101, 365–368 (1998).
  • 26) Kitagawa, N., Oda, M., and Totoki, T., Possible mechanism of irreversible nerve injury caused by local anesthetics: detergent properties of local anesthetics and membrane disruption. Anesthesiology, 100, 962–967 (2004).
  • 27) Laroche, C., Beney, L., Marechal, P. A., and Gervais, P., The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures. Appl. Microbiol. Biotechnol., 56, 249–255 (2001).
  • 28) Akel, A., Hermle, T., Niemoeller, O. M., Kempe, D. S., Lang, P. A., Attanasio, P., Podolski, M., Wieder, T., and Lang, F., Stimulation of erythrocyte phosphatidylserine exposure by chlorpromazine. Eur. J. Pharmacol., 532, 11–17 (2006).
  • 29) Deuticke, B., Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim. Biophys. Acta, 163, 494–500 (1968).
  • 30) Sheetz, M. P., and Singer, S. J., Biological membranes as bilayer couples: a molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA, 71, 4457–4461 (1974).
  • 31) Hugo, W. B., and Russell, A. D., Types of antimicrobial agents. In “Principles and Practice of Disinfection, Preservation and Sterilization” 2nd edn., eds. Russell, A. D., Hugo, W. B., and Ayliffe, G. A. J., Blackwell Science Publications Agents, Oxford, pp. 34–38 (1992).
  • 32) Ishikawa, S., Matsumura, Y., Yoshizako, F., and Tsuchido, T., Characterization of a cationic surfactant-resistant mutant isolated spontaneously from Escherichia coli. J. Appl. Microbiol., 92, 261–268 (2002).
  • 33) Vieira, D. B., and Carmona-Ribeiro, A. M., Cationic lipids and surfactants as antifungal agents: mode of action. J. Antimicrob. Chemother., 58, 760–767 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.