609
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Organization of the Biosynthetic Gene Cluster for the Polyketide Antitumor Macrolide, Pladienolide, in Streptomyces platensis Mer-11107

, , , , , & show all
Pages 2946-2952 | Received 24 Jun 2008, Accepted 25 Jul 2008, Published online: 22 May 2014

  • 1) Sakai, T., Sameshima, T., Matsufuji, M., Kawamura, N., Dobashi, K., and Mizui, Y., Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. I. Taxonomy, fermentation, isolation and screening. J. Antibiotics, 57, 173–179 (2004).
  • 2) Mizui, Y., Sakai, T., Iwata, M., Uenaka, T., Okamoto, K., Shimizu, H., Yamori, T., Yoshimatsu, K., and Asada, M., Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J. Antibiotics, 57, 188–196 (2004).
  • 3) Niijima, J., Kotake, Y., Kanada, M. R., Nagai, M., Fukuda, Y., Sakai, T., Ishihara, H., Yoshida, M., Tsuchida, T., Iwata, M., Uenaka, T., Mizui, Y., Abe, S., Yoshimatsu, K., and Asada, M., E7107, a new 7-urethane derivative of pladienolide D: discovery of a novel antitumor agent. Proc. Amer. Assoc. Cancer Res., 45, 691 (2004).
  • 4) Kotake, Y., Sagane, K., Owa, T., Mimori-Kiyosue, Y., Shimizu, H., Uesugi, M., Ishihama, Y., Iwata, M., and Mizui, Y., Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol., 3, 570–575 (2007).
  • 5) Weber, J. M., Leung, J. O., Maine, G. T., Potenz, R. H., Paulus, T. J., and DeWitt, J. P., Organization of a cluster of erythromycin genes in Saccharopolyspora erythraea. J. Bacteriol., 172, 2372–2383 (1990).
  • 6) Tang, L., Shah, S., Chung, L., Carney, J., Katz, L., Khosla, C., and Julien, B., Cloning and heterologous expression of the epothilone gene cluster. Science, 287, 640–642 (2000).
  • 7) Schwecke, T., Aparicio, J. F., Molnár, I., König, A., Khaw, L. E., Haydock, S. F., Oliynyk, M., Caffrey, P., Cortés, J., and Lester, J. B., The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA, 92, 7839–7843 (1995).
  • 8) Hopwood, D. A., and Sherman, D. H., Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Ann. Rev. Gen., 24, 37–66 (1990).
  • 9) Staunton, J., and Weissman, K. J., Polyketide biosynthesis: a millennium review. Nat. Prod. Rep., 18, 380–416 (2001).
  • 10) Rix, U., Fischer, C., Remsing, L. L., and Rohr, J., Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep., 19, 542–580 (2002).
  • 11) Bibb, M. J., Freeman, R. F., and Hopwood, D. A., Physical and genetical characterization of a second sex factor, SCP2, for Streptomyces coelicolor A3 (2). Mol. Gen. Genet., 154, 155–166 (1977).
  • 12) Labigne-Roussel, A., Harel, J., and Tompkins, L., Gene transfer from Escherichia coli to Campylobacter species: development of shuttle vectors for genetic analysis of Campylobacter jejuni. J. Bacteriol., 169, 5320–5323 (1987).
  • 13) Yanisch-Perron, C., Vieira, J., and Messing, J., Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103–119 (1985).
  • 14) Beck, E., Ludwig, G., Auerswald, E. A., Reiss, B., and Schaller, H., Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene, 19, 327–336 (1982).
  • 15) Agematu, H., Matsumoto, N., Fujii, Y., Kabumoto, H., Doi, S., Machida, K., Ishikawa, J., and Arisawa, A., Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci. Biotechnol. Biochem., 70, 307–311 (2006).
  • 16) Kotake, Y., Niijima, J., Fukuda, Y., Nagai, M., Kanada, R. M., Takeda, S., Nakashima, T., Yoshida, M., Tsuchida, T., and Sameshima, T., World Patent WO2004/011661 (Feb. 5, 2004).
  • 17) Blondelet-Rouault, M. H., Weiser, J., Lebrihi, A., Branny, P., and Pernodet, J. L., Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene, 190, 315–317 (1997).
  • 18) Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., Lydiate, D. J., Smith, C. P., Ward, J. M., and Schrempf, H., “Genetic Manipulation of Streptomyces: A Laboratory Manual,” John Innes Foundation, Norwich (1985).
  • 19) Sakai, T., Asai, N., Okuda, A., Kawamura, N., and Mizui, Y., Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. II. Physico-chemical properties and structure elucidation. J. Antibiotics, 57, 180–187 (2004).
  • 20) Xue, Y., Zhao, L., Liu, H. W., and Sherman, D. H., A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA, 95, 12111–12116 (1998).
  • 21) Oliynyk, M., Stark, C. B., Bhatt, A., Jones, M. A., Hughes-Thomas, Z. A., Wilkinson, C., Oliynyk, Z., Demydchuk, Y., Staunton, J., and Leadlay, P. F., Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol. Microbiol., 49, 1179–1190 (2003).
  • 22) Sun, Y., Zhou, X., Dong, H., Tu, G., Wang, M., Wang, B., and Deng, Z., A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem. Biol., 10, 431–441 (2003).
  • 23) Xiong, Y., Wu, X., and Mahmud, T., A homologue of the Mycobacterium tuberculosis PapA5 protein, rif-orf20, is an acetyltransferase involved in the biosynthesis of antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Chembiochem., 6, 834–837 (2005).
  • 24) Onwueme, K. C., Ferreras, J. A., Buglino, J., Lima, C. D., and Quadri, L. E., Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc. Natl. Acad. Sci. USA, 101, 4608–4613 (2004).
  • 25) Wilson, D. J., Xue, Y., Reynolds, K. A., and Sherman, D. H., Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Bacteriol., 183, 3468–3475 (2001).
  • 26) Kuscer, E., Coates, N., Challis, I., Gregory, M., Wilkinson, B., Sheridan, R., and Petkovic, H., Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J. Bacteriol., 189, 4756–4763 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.