410
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

An Antioxidant of Dried Chili Pepper Maintained Its Activity through Postharvest Ripening for 18 Months

, , , , &
Pages 3297-3300 | Received 04 Jul 2008, Accepted 18 Aug 2008, Published online: 22 May 2014

  • 1) Cisneros-Pineda, O., Torres-Tapia, L. W., Gutierrez-Pacheco, L. C., Contreras-Martin, F., Gonzalez-Estrada, T., and Peraza-Sanchez, S. R., Capsaicinoids quantification in chili peppers cultivated in the state of Yucatan, Mexico. Food Chem., 104, 1755–1760 (2007).
  • 2) Howard, L. R., Talcott, S. T., Brenes, C. H., and Villalon, B., Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem., 48, 1713–1720 (2000).
  • 3) Katsuragawa, T., Kohmoto, Y., Kohmoto, T., Yamauchi, R., and Kato, K., Alteration of acid amides by ripening of chili pepper (in Japanese). New Food Industry, 48, 17–20 (2006).
  • 4) Ly, T. N., Shimoyamada, M., Kato, K., and Yamauchi, R., Isolation and characterization of some antioxidative compounds from the rhizomes of smaller galanga (Alpinia officinarum Hance). J. Agric. Food Chem., 51, 4924–4929 (2003).
  • 5) Amthor, J. S., Efficiency of lignin biosynthesis: a quantitative analysis. Ann. Bot. (London), 91, 673–695 (2003).
  • 6) Stange, R. R. J., Ralph, J., Peng, J., Sims, J. J., Midland, S. L., and McDonald, R. E., Acidolysis and hot water extraction provide new insights into the composition of the induced “lignin-like” material from squash fruit. Phytochemistry, 57, 1005–1011 (2001).
  • 7) Whetten, R., MacKay, J., and Sederoff, R., Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 585–609 (1998).
  • 8) Vassao, D. G., Gang, D. R., Koeduka, T., Jackson, B., Pichersky, E., Davin, L. B., and Lewis, N. G., Chavicol formation in sweet basil (Ocimum basilicum): cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org. Biomol. Chem., 4, 2733–2744 (2006).
  • 9) Ibrahim, R. K., and Grisebach, H., Purification and properties of UDP-glucose: coniferyl alcohol glucosyltransferase from suspension cultures of Paul’s scarlet rose. Arch. Biochem. Biophys., 176, 700–708 (1976).
  • 10) Marcinowski, S., and Grisebach, H., Enzymology of lignification: cell-wall bound beta-glucosidase for coniferin from spruce (Picea abies) seedlings. Eur. J. Biochem., 87, 37–44 (1978).
  • 11) Humphreys, J. M., and Chapple, C., Rewriting the lignin roadmap. Curr. Opin. Plant Biol., 5, 224–229 (2002).
  • 12) Sarni, F., Grand, C., and Boudet, A. M., Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus × euramericana). Eur. J. Biochem., 139, 259–265 (1984).
  • 13) Back, K., Jang, S., Lee, B., Schmidt, A., Strack, D., and Kim, K., Cloning and characterization of a hydroxycinnamoyl-CoA: tyramine N-(hydroxycinnamoyl) transferase induced in response to UV-C and wounding from Capsicum annuum. Plant Cell Physiol., 42, 475–481 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.