162
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

High-Casein Diet Suppresses Guanidinoacetic Acid-Induced Hyperhomocysteinemia and Potentiates the Hypohomocysteinemic Effect of Serine in Rats

, , &
Pages 3258-3264 | Received 05 Aug 2008, Accepted 27 Aug 2008, Published online: 22 May 2014

  • 1) Refsum, H., Ueland, P. M., Nygard, O., and Vollset, S. E., Homocysteine and cardiovascular disease. Annu. Rev. Med., 49, 31–62 (1998).
  • 2) Selhub, J., Homocysteine metabolism. Annu. Rev. Nutr., 19, 217–246 (1999).
  • 3) De Bree, A., Berschuren, W. M., Kromhout, D., Kluijtmans, L. A., and Blom, H. J., Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol. Rev., 54, 599–618 (2002).
  • 4) Okawa, H., Morita, T., and Sugiyama, K., Increased plasma homocysteine concentration in rats from a low casein diet. Biosci. Biotechnol. Biochem., 70, 3050–3053 (2006).
  • 5) Okawa, H., Morita, T., and Sugiyama, K., Effect of dietary soybean protein level on the plasma homocysteine concentration in rats. Biosci. Biotechnol. Biochem., 72, 1607–1610 (2008).
  • 6) Fukada, S., Shimada, Y., Morita, T., and Sugiyama, K., Suppression of methionine-induced hyperhomocysteinemia by glycine and serine in rats. Biosci. Biotechnol. Biochem., 70, 2403–2409 (2006).
  • 7) Southern, F., Eidt, J., Drouilhet, J., Mukunyadzi, P., Williams, D. K., Cruz, C. M., Wang, Y., Poirier, L. A., Brown, A. T., and Moursi, M. M., Increasing levels of dietary homocystine with carotid endarterectomy produced proportionate increases in plasma homocysteine and intimal hyperplasia. Atherosclerosis, 158, 129–138 (2001).
  • 8) Stead, L. M., Au, K. P., Jacobs, R. L., Brosnan, M. E., and Brosna, J. T., Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am. J. Physiol. Endocrinol. Metab., 281, E1095–1100 (2001).
  • 9) Miller, J. W., Nadeau, M. R., Smith, J., Smith, D., and Selhub, J., Folate-deficiency-induced homocysteinaemia in rats: disruption of S-adenosylmethionine’s co-ordinate regulation of homocysteine metabolism. Biochem. J., 298, 415–419 (1994).
  • 10) Fukada, S., Setoue, M., Morita, T., and Sugiyama, K., Dietary eritadenine suppresses guanidinoacetic acid-induced hyperhomocysteinemia in rats. J. Nutr., 136, 2797–2802 (2006).
  • 11) Setoue, M., Ohuchi, S., Morita, T., and Sugiyama, K., Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats. Biosci. Biotechnol. Biochem., 72, 1696–1703 (2008).
  • 12) Fukada, S., Morita, T., and Sugiyama, K., Effects of various amino acids on methionine-induced hyperhomocysteinemia in rats. Biosci. Biotechnol. Biochem., 72, 1940–1943 (2008).
  • 13) Verhoef, P., van Villet, T., Olthof, M. R., and Katan, M. B., A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers. Am. J. Clin. Nutr., 82, 553–558 (2005).
  • 14) Durand, P., Fortin, L. J., Luissier-Cacan, S., Davignon, J., and Blache, D., Hyperhomocysteinemia induced by folic acid deficiency and methionine load: application of a modified HPLC method. Clin. Chim. Acta, 252, 83–93 (1996).
  • 15) Cook, R. J., Horne, D. W., and Wagner, C., Effect of dietary methyl group deficiency on one-carbon metabolism in rats. J. Nutr., 119, 612–617 (1988).
  • 16) Laryea, M. D., Steinhagen, F., Pawliczek, S., and Wendel, U., Simple method for the routine determination of betaine and N,N-dimethylglycine in blood and urine. Clin. Chem., 44, 1937–1941 (1998).
  • 17) Mudd, S. H., Finkelstein, J. D., Irreverre, F., and Laster, L., Transsulfuration in mammals: microassay and tissue distributions of three enzymes of the pathway. J. Biol. Chem., 240, 4382–4392 (1965).
  • 18) Einarsson, S., Josefsson, B., and Lagerkvist, S., Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J. Chromatogr., 282, 609–618 (1983).
  • 19) Finkelstein, J. D., Martin, J. J., and Harris, B. J., Effect of dietary cystine on methionine metabolism in rat liver. J. Nutr., 116, 985–990 (1986).
  • 20) Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent. J. Biol. Chem., 194, 265–275 (1951).
  • 21) Mudd, S. H., and Poole, J. R., Labile methyl balances for normal humans on various dietary regimens. Metabolism, 24, 721–735 (1975).
  • 22) Noga, A. A., Stead, L. M., Zhao, Y., Brosnan, M. E., Brosnan, J. T., and Vance, D. E., Plasma homocysteine is regulated by phospholipid methylation. J. Biol. Chem., 278, 5952–5955 (2003).
  • 23) Stead, L. M., Jacobs, R. L., Brosnan, M. E., and Brosnan, J. T., Methylation demand and homocysteine metabolism. Adv. Enzyme Regul., 44, 321–333 (2004).
  • 24) Finkelstein, J. D., and Martin, J. J., Methionine metabolism in mammals: distribution of homocysteine between competing pathways. J. Biol. Chem., 259, 9508–9513 (1984).
  • 25) Finkelstein, J. D., Kyle, W. E., and Harris, B. J., Methionine metabolism in mammals: regulation of homocysteine methyltransferases in rat tissue. Arch. Biochem. Biophys., 146, 84–92 (1971).
  • 26) Yamamoto, N., Tanaka, T., and Noguchi, T., The effect of a high-protein diet on cystathionine β-synthase activity and its transcript levels in rat liver. J. Nutr. Sci. Vitaminol., 42, 589–593 (1996).
  • 27) Finkelstein, J. D., Kyle, W. E., and Pick, A. M., Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem. Biophys. Res. Commun., 66, 81–87 (1975).
  • 28) Verhoef, P., Steenge, G. R., Boelsma, E., van Viet, T., Olthof, M. R., and Katan, M. B., Dietary serine and cystine attenuate the homocysteine-raising effect of dietary methionine: a randomized crossover trial in humans. Am. J. Clin. Nutr., 80, 674–679 (2004).
  • 29) Finkelstein, J. D., and Martin, J. J., Methionine metabolism in mammals: adaptation to methionine excess. J. Biol. Chem., 261, 1582–1587 (1986).
  • 30) Kohashi, N., Yamaguchi, K., Hosokawa, Y., Kori, Y., and Ueda, I., Dietary control of cysteine dioxygenase in rat liver. J. Biochem., 84, 159–168 (1978).
  • 31) Bella, D. L., Hahn, C., and Stipanuk, M. H., Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. Am. J. Physiol., 277, E144–E153 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.