747
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Correlation between the Stability and Redox Potential of Three Homologous Cytochromes c from Two Thermophiles and One Mesophile

, , , , &
Pages 366-371 | Received 29 Aug 2008, Accepted 20 Oct 2008, Published online: 22 May 2014

  • 1) Mao, J., Hauser, K., and Gunner, M. R., How cytochromes with different folds control heme redox potentials. Biochemistry, 42, 9829–9840 (2003).
  • 2) Shifman, J. M., Gibney, B. R., Eryl Sharp, R., and Dutton, P. L., Heme redox potential control in de novo designed four-α-helix bundle proteins. Biochemistry, 39, 14813–14821 (2000).
  • 3) Hilgen-Willis, S., Bowden, E. F., and Pielak, G. J., Dramatic stabilization of ferricytochrome c upon reduction. J. Inorg. Chem., 51, 649–653 (1993).
  • 4) Bertini, I., Cavallaro, G., and Rosato, A., Cytochrome c: occurrence and functions. Chem. Rev., 106, 90–115 (2006).
  • 5) Sambongi, Y., Uchiyama, S., Kobayashi, Y., Igarashi, Y., and Hasegawa, J., Cytochrome c from a thermophilic bacterium has provided insights into the mechanism of protein maturation, folding, and stability. Eur. J. Biochem., 269, 3355–3361 (2002).
  • 6) Nakamura, S., Ichiki, S., Takashima, H., Uchiyama, S., Hasegawa, J., Kobayashi, Y., Sambongi, Y., and Ohkubo, T., Structure of cytochrome c 552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus: comparative study on the thermostability of cytochrome c. Biochemistry, 45, 6115–6123 (2006).
  • 7) Uchiyama, S., Ohshima, A., Nakamura, S., Hasegawa, J., Terui, N., Takayama, S. J., Yamamoto, Y., Sambongi, Y., and Kobayashi, Y., Complete thermal-unfolding profiles of oxidized and reduced cytochromes c. J. Am. Chem. Soc., 126, 14684–14685 (2004).
  • 8) Takahashi, Y., Sasaki, H., Takayama, S. J., Mikami, S., Kawano, S., Mita, H., Sambongi, Y., and Yamamoto, Y., Further enhancement of the thermostability of Hydrogenobacter thermophilus cytochrome c 552. Biochemistry, 45, 11005–11011 (2006).
  • 9) Hasegawa, J., Shimahara, H., Mizutani, M., Uchiyama, S., Arai, H., Ishii, M., Kobayashi, Y., Ferguson, S. J., Sambongi, Y., and Igarashi, Y., Stabilization of Pseudomonas aeruginosa cytochrome c 551 by systematic amino acid substitutions based on the structure of thermophilic Hydrogenobacter thermophilus cytochrome c 552. J. Biol. Chem., 274, 37533–37537 (1999).
  • 10) Oikawa, K., Nakamura, S., Sonoyama, T., Ohshima, A., Kobayashi, Y., Takayama, S. J., Yamamoto, Y., Uchiyama, S., Hasegawa, J., and Sambongi, Y., Five amino acid residues responsible for the high stability of Hydrogenobacter thermophilus cytochrome c 552: reciprocal mutation analysis. J. Biol. Chem., 280, 5527–5532 (2005).
  • 11) Pace, C. N., and Shaw, K. L., Linear extrapolation method of analyzing solvent denaturation curves. Proteins, Suppl. 4, 1–7 (2000).
  • 12) Terui, N., Tachiiri, N., Matsuo, H., Hasegawa, J., Uchiyama, S., Kobayashi, Y., Igarashi, Y., Sambongi, Y., and Yamamoto, Y., Relationship between redox function and protein stability of cytochromes c. J. Am. Chem. Soc., 125, 13650–13651 (2003).
  • 13) Mason, P. E., Neilson, G. W., Dempsey, C. E., Barnes, A. C., and Cruickshank, J. M., The hydration structure of guanidinium and thiocyanate ions: implications for protein stability in aqueous solution. Proc. Natl. Acad. Sci. USA, 100, 4557–4561 (2003).
  • 14) Hakamada, S., Sonoyama, T., Ichiki, S., Nakamura, S., Uchiyama, S., Kobayashi, Y., and Sambongi, Y., Stabilization mechanism of cytochrome c 552 from a moderately thermophilic bacterium, Hydrogenophilus thermoluteolus. Biosci. Biotechnol. Biochem., 72, 2103–2109 (2008).
  • 15) Tomlinson, E. J., and Ferguson, S. J., Conversion of a c type cytochrome to a b type that spontaneously forms in vitro from apo protein and heme: implications for c type cytochrome biogenesis and folding. Proc. Natl. Acad. Sci. USA, 97, 5156–5160 (2000).
  • 16) Wittung-Stafshede, P., Effect of redox state on unfolding energetics of heme proteins. Biochim. Biophys. Acta, 1432, 401–405 (1999).
  • 17) Fisher, M. T., Differences in thermal stability between reduced and oxidized cytochrome b 562 from Escherichia coli. Biochemistry, 30, 10012–10018 (1991).
  • 18) Reincke, B., Perez, C., Pristovsek, P., Lucke, C., Ludwig, C., Lohr, F., Rogov, V. V., Ludwig, B., and Ruterjans, H., Solution structure and dynamics of the functional domain of Paracoccus denitrificans cytochrome c 552 in both redox states. Biochemistry, 40, 12312–12320 (2001).
  • 19) Voet, D., and Voet, J. G., “Biochemistry 3rd Edition,” Wiley, pp. 803–804 (1990).
  • 20) Ogawa, K., Sonoyama, T., Takeda, T., Ichiki, S., Nakamura, S., Kobayashi, Y., Uchiyama, S., Nakasone, K., Takayama, S. J., Mita, H., Yamamoto, Y., and Sambongi, Y., Roles of a short connecting disulfide bond in the stability and function of psychrophilic Shewanella violacea cytochrome c 5. Extremophiles, 11, 797–807 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.