308
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Correlation of Differential Expression of Silkworm Antimicrobial Peptide Genes with Different Amounts of Rel Family Proteins and Their Gene Transcriptional Activity

, , , , &
Pages 599-606 | Received 30 Sep 2008, Accepted 28 Oct 2008, Published online: 22 May 2014

  • 1) Brennan, C. A., and Anderson, K. V., Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol., 22, 457–483 (2004).
  • 2) Kanost, M. R., Jiang, H., and Yu, X. Q., Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev., 198, 97–105 (2004).
  • 3) Osta, M. A., Christophides, G. K., Vlachou, D., and Kafatos, F. C., Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J. Exp. Biol., 207, 2551–2563 (2004).
  • 4) Royet, J., Reichhart, J. M., and Hoffmann, J. A., Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol., 17, 11–17 (2005).
  • 5) Lemaitre, B., and Hoffmann, J. A., The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 25, 697–743 (2007).
  • 6) Engström, Y., Induction and regulation of antimicrobial peptides in Drosophila. Dev. Comp. Immunol., 23, 345–358 (1999).
  • 7) Imler, J. L., and Bulet, P., Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy, 86, 1–21 (2005).
  • 8) Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A., The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973–983 (1996).
  • 9) Lemaitre, B., Reichhart, J. M., and Hoffmann, J. A., Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA, 94, 14614–14619 (1997).
  • 10) Rutschmann, S., Kilinc, A., and Ferrandon, D., Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J. Immunol., 168, 1542–1546 (2002).
  • 11) Lemaitre, B., Kromer-Metzger, E., Michaut, L., Nicolas, E., Meister, M., Georgel, P., Reichhart, J. M., and Hoffmann, J. A., A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl. Acad. Sci. USA, 92, 9465–9469 (1995).
  • 12) Dushay, M. S., Asling, B., and Hultmark, D., Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA, 93, 10343–10347 (1996).
  • 13) Hedengren, M., Asling, B., Dushay, M. S., Ando, I., Ekengren, S., Wihlborg, M., and Hultmark, D., Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell, 4, 827–837 (1999).
  • 14) Kaneko, T., and Silverman, N., Bacterial recognition and signalling by the Drosophila IMD pathway. Cell. Microbiol., 7, 461–469 (2005).
  • 15) Levashina, E. A., Ohresser, S., Lemaitre, B., and Imler, J. L., Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J. Mol. Biol., 278, 515–527 (1998).
  • 16) Imler, J. L., and Hoffmann, J. A., Toll and Toll-like proteins: an ancient family of receptors signaling infection. Rev. Immunogenet., 2, 294–304 (2000).
  • 17) Gobert, V., Gottar, M., Matskevich, A. A., Rutschmann, S., Royet, J., Belvin, M., Hoffmann, J. A., and Ferrandon, D., Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science, 302, 2126–2130 (2003).
  • 18) Wang, L., Weber, A. N., Atilano, M. L., Filipe, S. R., Gay, N. J., and Ligoxygakis, P., Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO J., 25, 5005–5014 (2006).
  • 19) Kaneko, T., Yano, T., Aggarwal, K., Lim, J. H., Ueda, K., Oshima, Y., Peach, C., Erturk-Hasdemir, D., Goldman, W. E., Oh, B. H., Kurata, S., and Silverman, N., PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol., 7, 715–723 (2006).
  • 20) Ligoxygakis, P., Pelte, N., Hoffmann, J. A., and Reichhart, J. M., Activation of Drosophila Toll during fungal infection by a blood serine protease. Science, 297, 114–116 (2002).
  • 21) Robertson, A. S., Belorgey, D., Lilley, K. S., Lomas, D. A., Gubb, D., and Dafforn, T. R., Characterization of the necrotic protein that regulates the Toll-mediated immune response in Drosophila. J. Biol. Chem., 278, 6175–6180 (2003).
  • 22) Yamakawa, M., and Tanaka, H., Immune proteins and their gene expression in the silkworm, Bombyx mori. Dev. Comp. Immunol., 23, 281–289 (1999).
  • 23) Kaneko, Y., Furukawa, S., Tanaka, H., and Yamakawa, M., Expression of antimicrobial peptide genes encoding Enbocin and Gloverin isoforms in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem., 71, 2233–2241 (2007).
  • 24) Tanaka, H., Ishibashi, J., Fujita, K., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Y., Iwasaki, T., Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K., and Yamakawa, M., A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol., 38, 1087–1110 (2008).
  • 25) Kato, Y., Taniai, K., Hirochika, H., and Yamakawa, M., Expression and characterization of cDNAs for cecropin B, an antibacterial protein of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol., 23, 285–290 (1993).
  • 26) Taniai, K., Ishii, T., Sugiyama, M., Miyanoshita, A., and Yamakawa, M., Nucleotide sequence of 5′-upstream region and expression of a silkworm gene encoding a new member of the attacin family. Biochem. Biophys. Res. Commun., 220, 594–599 (1996).
  • 27) Tanaka, H., Yamamoto, M., Moriyama, Y., Yamao, M., Furukawa, S., Sagisaka, A., Nakazawa, H., Mori, H., and Yamakawa, M., A novel Rel protein and shortened isoform that differentially regulate antibacterial peptide genes in the silkworm Bombyx mori. Biochim. Biophys. Acta, 1730, 10–21 (2005).
  • 28) Tanaka, H., Matsuki, H., Furukawa, S., Sagisaka, A., Kotani, E., Mori, H., and Yamakawa, M., Identification and functional analysis of Relish homologs in the silkworm, Bombyx mori. Biochim. Biophys. Acta, 1769, 559–568 (2007).
  • 29) Lee, J. H., Lee, I. H., Noda, H., Mita, K., and Taniai, K., Verification of elicitor efficacy of lipopolysaccharides and peptidoglycans on antibacterial peptide gene expression in Bombyx mori. Insect Biochem. Mol. Biol., 37, 1338–1347 (2007).
  • 30) Sambrook, J., and Russell, D. W., “Molecular Cloning, a Laboratory Manual” 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2001).
  • 31) Takahashi, T., Murakami, H., Imanishi, S., Miyazaki, M., Kamiie, K., Suzuki, K., Taira, H., and Yamashita, T., Calreticulin is transiently induced after immunogen treatment in the fat body of the silkworm Bombyx mori. J. Insect Biotechnol. Sericol., 75, 79–84 (2006).
  • 32) Krasnow, M. A., Saffman, E. E., Kornfeld, K., and Hogness, D. S., Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell, 57, 1031–1043 (1989).
  • 33) Theilmann, D. A., and Stewart, S., Molecular analysis of the trans-activating IE-2 gene of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology, 187, 84–96 (1992).
  • 34) Sagisaka, A., Tanaka, H., Furukawa, S., and Yamakawa, M., Characterization of a homologue of the Rel/NF-κB transcription factor from a beetle, Allomyrina dichotoma. Biochim. Biophys. Acta, 1678, 85–93 (2004).
  • 35) Tanaka, H., Sagisaka, A., Fujita, K., Kaneko, Y., Imanishi, S., and Yamakawa, M., Lipopolysaccharide elicits expression of immune-related genes in the silkworm, Bombyx mori. Insect Mol. Biol., 18, 71–75 (2009).
  • 36) Barillas-Mury, C., Charlesworth, A., Gross, I., Richman, A., Hoffmann, J. A., and Kafatos, F. C., Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae. EMBO J., 15, 4691–4701 (1996).
  • 37) Meister, S., Kanzok, S. M., Zheng, X. L., Luna, C., Li, T. R., Hoa, N. T., Clayton, J. R., White, K. P., Kafatos, F. C., Christophides, G. K., and Zheng, L., Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA, 102, 11420–11425 (2005).
  • 38) Shin, S. W., Kokoza, V., Ahmed, A., and Raikhel, A. S., Characterization of three alternatively spliced isoforms of the Rel/NF-κ B transcription factor Relish from the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. USA, 99, 9978–9983 (2002).
  • 39) Shin, S. W., Kokoza, V., Bian, G., Cheon, H. M., Kim, Y. J., and Raikhel, A. S., REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J. Biol. Chem., 280, 16499–16507 (2005).
  • 40) Zou, Z., Evans, J. D., Lu, Z., Zhao, P., Williams, M., Sumathipala, N., Hetru, C., Hultmark, D., and Jiang, H., Comparative genomic analysis of the Tribolium immune system. Genome Biol., 8, R177 (2007).
  • 41) Busse, M. S., Arnold, C. P., Towb, P., Katrivesis, J., and Wasserman, S. A., A κB sequence code for pathway-specific innate immune responses. EMBO J., 26, 3826–3835 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.