5
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Antiviral Pathway Deregulation of Chronic Fatigue Syndrome Induces Nitric Oxide Production in Immune Cells That Precludes a Resolution of the Inflammatory Response

, , , &
Pages 17-28 | Received 03 Dec 2004, Accepted 12 Apr 2005, Published online: 04 Dec 2011

References

  • Komaroff, A. L. and Buchwald, D. S. Chronic fatigue syndrome: An update. Annu. Rev. Med. 1998; 49: 1–13.
  • De Freitas, E., Hilliard, B., Cheney, P. R., Bell, D. S., Kiggundu, E., Sankey, D., Wroblewska, Z., Palladino, M., Woodward, J. P. and Koprowsky, H. Retroviral se-quences related to human T-Iymphotropic virus type II in patients with chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 1991; 88: 2922–2926.
  • Suhadolnik, R. J., Reichenbach, N. L., Hitzges, P., Sobol, R. W., Peterson, D. L.,Henry, B., Ablashi, D. V., Miller, W. E. G., Schröder, H. C., Carter, W. A. and Strayer, D. Upregulation of the 2-5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome. ClM. Infect. Dis. 1994; 18: S96–S104.
  • Vojdani, A., Choppa, P. C. and Lapp, C. W. Downregulation of RNase L inhibi-tor correlates with upregulation of interferon-induced proteins (2-5A synthetase and RNase L) in patients with chronic fatigue immune dysfunction syndrome. J. ClM. Lab. Immunol. 1998; 50: 1–16.
  • Suhadolnik, R. J., Peterson, D. L., O'Brien, K., Cheney, P. R., Herst, C. V. T., Reichenbach, N. L., Kon, N., Horvath, S. E., Iacono, K. T., Adelson, M. E., et al. Bio-chemical evidence for a novel low molecular weight 2-5A-dependent RNase L in chronic fatigue syndrome. J. Interferon Cytokine Res. 1997; 17: 377–385.
  • Roelens, S., Herst, C. V., D'Haese, A., De Smet, K., Frémontt, M., De Meirleir, K. and Englebienne, P. G-actin cleavage parallels 2-5A-dependent RNase L cleavage in pe-ripheral blood mononuclear cells—relevance to a possible serum-based screening test for dysregulations in the 2-5A pathway. J. Chronic Fatigue Syndr. 2001; 8(3–4): 63–82.
  • Demettre, E., Bastide, L., D'Haese, A., De Smet, K., De Meirleir, K., Tiev, K. P., Englebienne, P., Lebleu, B. Ribonuclease L proteolysis in peripheral blood mon-onuclear cells of chronic fatigue syndrome patients. J. Biol. Chem. 2002; 277: 35746–35751.
  • De Meirleir, K., Bisbal, C., Campine, I., De Becker, P., Salehzada, T., Demettre, E. and Lebleu, B. A 37-kDa 2-5A binding protein as a potential biochemical marker for chronic fatigue syndrome. Am. J. Med. 2000; 108: 99–105.
  • Tiev, K. P., Demettre, E., Ercolano, P., Bastide, L., Lebleu, B. and Cabane, J. RNase L levels in peripheral blood mononuclear cells: 37-kilodalton/83-kilodalton isoform ratio is a potential test for chronic fatigue syndrome. ClM. Diagn. Lab. Immunol. 2003; 10: 315–316.
  • Fremont, M., El Bakkouri, K., Vaeyens, F., Herst, C. V., De Meirleir, K. and Englebienne, P. 2',5'-Oligoadenylate size is critical to protect RNase L against pro-teolytic cleavage in chronic fatigue syndrome. Exp. MoL PathoL 2005; 78: 239–246.
  • McGregor, N. R., De Becker, P. and De Meirleir, K. RNase L, symptoms, bio-chemistry of fatigue and pain, and co-morbid disease. In Chronic Fatigue Syndrome, A Biological Approach, eds. Englebienne, P. and De Meirleir, K. (CRC Press, Boca Raton), 2002; pp. 175–200.
  • Cannon, J. G., Angel, J. B., Ball, R. W., Abad, L. W., Fagioli, F. and Komaroff, A. L. Acute phase responses and cytokine secretion in chronic fatigue syndrome. J. Clin. Immunol. 1999; 19: 414–421.
  • Moss, R. B., Mercandetti, A. and Vojdani, A. TNF-a and chronic fatigue syn-drome. J. Clin. Immunol. 1999; 19: 314–316.
  • Lawrence, T., Gilroy, D. W., Colville-Nash, P. R. and Willoughby, D. A. Possible new role of NF-KB in the resolution of inflammation. Nature Med. 2001; 7: 1291–1297.
  • Fukuda, K., Straus, S. E., Hickie, I., Sharpe, M. C., Dobbins, J. G., Komaroff, A. and The International CFS Study Group. The chronic fatigue syndrome: A comprehen-sive approach to its definition and study. Ann. Intern. Med. 1994; 121: 953–959.
  • Shetzline S. E. and Suhadolnik, R. J. Characterization of 2',5'-oligoadenylate (2-5A)-dependent RNase L: Azido photoaffinity labeling and 2-5A-dependent activa-tion. J. Biol. Chem. 2001; 276: 23707–23711.
  • Richards, R. S., Roberts, T. K., McGregor, N. R., Dunstan, R. H. and Butt, H. L. Blood parameters indicative of oxidative stress are associated with symptom expres-sion in chronic fatigue syndrome. Redox Rep. 2000; 5: 35–41.
  • Pall, M. L. Levels of nitric oxide synthase product citrulline are elevated in sera of chronic fatigue syndrome patients. J. Chronic Fatigue Syndr. 2002; /0(3–4): 37–41.
  • CasteIli, J. C., Hassel, B. A., Wood, K. A., Li, X-L., Amemiya, K., Dalakas, M. C., Torrence, P. F. and Youle, R. J. A study of the interferon antiviral mechanism: Apoptosis activation by the 2-5A system. J. Exp. Med. 1997; 186: 967–972.
  • Srivastava, S. P., Kumar, K. U. and Kaufman, R. J. Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the dou-ble-stranded RNA-dependent protein kinase. J. Biol. Chem. 1998; 273: 2416–2423.
  • Le Roy, F., Bisbal, C., Silhol, M., Martinand, C., Lebleu, B. and Salehzada, T. The 2-5A/RNase L inhibitor (RU) pathway regulates mitochondria' mRNAs stability in interferon a-treated H9 cells. J. Biol. Chem. 2001; 276: 48473–48482.
  • Rathmell, J. C. and Thompson, C. B. The central effectors of cell death in the im-mune system. Annu. Rev. Immunol. 1999; 17: 781–828.
  • Balachandran, S., Kim, C. N., Yeh, W-C., Mak, T. W., Bhalla, K. and Barber, G.N. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 1998; 17: 6888–6902.
  • Hassan, I. S., Bannister, B. A., Akbar, A., Weir, W. and Bofill, M. A study of the immunology of the chronic fatigue syndrome: Correlation of immunologic parameters to health dysfunction. Clin. Immunol. Immunopathol. 1998; 87: 60–67.
  • Thou, M., Demo, S. D., McClure, T. N., Crea, R. and Bitler, C. M. A novel splice variant of the cell-death promoting protein BAX. J. Biol. Chem. 1998; 273: 11930–11936.
  • Zamanian-Daryoush, M., Mogensen, T. H., DiDonato, J. A. and Williams, B. R. G. NF-KB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-KB-inducing kinase and IKB kinase. MoL Cell. Biol. 2000; 20: 1278–1290.
  • Gil, J., Alcami, J. and Esteban, M. Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the a-subunit of eukaryotic translation initiation factor 2 and NF-KB. MoL Cell. Biol. 1999; 19: 4653–4663.
  • Heitmeier, M. R., Scarim, A. L. and Corbett, J. A. Double-stranded RNA-induced inducible nitric-oxide synthase expression and interleukin-1 release by murine macro-phages requires NF-KB activation. J. Biol. Chem. 1998; 273: 15301–15307.
  • De Nadai, C., Sestili, P., Cantoni, O., Lievremont, J-P., Sciorati, C., Barsacchi, R., Moncada, S., Meldolesi, J. and Clementi, E. Nitric oxide inhibits tumor necrosis factor-a-induced apoptosis by reducing the generation of ceramide. Proc. Natl. Acad. Sci. USA 2000; 97: 5480–5485.
  • Zech, B., Wilm, M., van Eldik, R. and Brine, B. Mass spectrometric analysis of nitric oxide-modified caspase-3. J. Biol. Chem. 1999; 274: 20931–20936.
  • Patel, R. C. and Sen, G. C. PACT, a protein activator of the interferon-induced protein kinase PKR. EMBO J. 1998; 17: 4379–4390.
  • Chu, W-M., Ballard, R., Carpick, B. W., Williams, B. R. G. and Schmid, C. W. Potential Alu function: Regulation of the activity of double-stranded RNA-activated kinase PKR. MoL Cell. Biol. 1998; 18: 58–68.
  • Yamamoto, Y. and Gaynor, R. B. Therapeutic potential of inhibition of the NF-KB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 2001; 107: 135–142.
  • Pall, M. L. Cobalamin used in chronic fatigue syndrome therapy is a nitric oxide scavenger. J. Chronic Fatigue Syndr. 2001; 8(2): 39–44.
  • Logan, A. C. and Wong, C. Chronic fatigue syndrome: Oxidative stress and di-etary modifications. Ahem. Med. Rev. 2001; 6: 450–459.
  • Englebienne, P. The Toll-like/type I interferon pathways as emerging therapeu-tic targets for autoimmune diseases. Drug Design Rev.-Online 2004; 1: 53–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.