171
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Driving Motor Recovery After Stroke

, , &
Pages 397-411 | Published online: 09 Jan 2015

REFERENCES

  • National Institute of Child Health and Human Development. Clinical Trial Planning Grants to Guide Timing, Intensity, and Duration of Rehabiltiation for Stroke and Hip Fracture. Bethesda, MD: National Institutes of Health; 2001.
  • Black J, Isaacs K, Anderson B, Alcantara A, Greenough W. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA. 1990:5568–5572.
  • Floyer-Lea A, Matthews PM. Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005;94(1):512–518.
  • Jones TA, Chu CJ, Grande LA, Gregory AD. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. Neurosci. 1999;19(22):10153–10163.
  • Karni A, Meyer G, Rey-Hipolito C, et al. The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA. 1998;95(3):861–868.
  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807.
  • Puttemans V, Wenderoth N, Swinnen SP. Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: From the cognitive stage to advanced levels of automaticity. J Neurosci. 2005;25(17):4270–4278.
  • Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci. 1998;1 (3):230–234.
  • Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci. 1996;16(14):4529–4535.
  • Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci. 2004;24(3):628–633.
  • Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res. 2003;28(11):1757–1769.
  • Brown C, Li P, Boyd J, Delaney K, Murphy T. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. Neurosci. 2007;27:4101–4109.
  • Duncan PW, Lai SM, Keighley J. Defining post-stroke recovery: Implications for design and interpretation of drug trials. Neuropharmacology. 2000;39(5):835–841.
  • Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–1254.
  • Wolf S, Winstein C, Miller J, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke. The EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–2104.
  • Volpe BT, Lynch D, Rykman-Berland A, et al. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008; 22:305–310.
  • van der Lee JFI, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter L M. Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke. 1999;30(11):2369–2375.
  • Taub E, Uswatte G, King D, Morris D, Crago J, Chatterjee A. A placebo-controlled trial of Constraint-Induced Movement Therapy for upper extremity after stroke. Stroke. 2006;37:1045–1049.
  • Sterr A, Elbert T, Berthold I, Kolbel S, Rockstroh B, Taub E. Longer versus shorter daily constraint-id uced movement therapy of chronic hemiparesis: An exploratory study. Arch Phys Med Rehabil. 2002;83(10):1374–1377.
  • Cauraugh JFI, Kim S. Two coupled motor recovery protocols are better than one: Electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke. 2002;33(6):1589–1594.
  • Jensen J, Marstrand P, Nielsen J. Motor skill training and strength training are associated with different plastic changes in the central nervous system. Appl Physiol. 2005;99:1558–1568.
  • Kleim JA, Cooper NR, VandenBerg PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 2002;934(1):1–6.
  • Plautz EJ, Milliken GW, Nudo RJ. Effects of repetitive motor training on movement representations in adult squirrel monkeys: Role of use versus learning. Neurobiol Learning Memory. 2000;74:27–55.
  • Remple MS, Bruneau RM, VandenBerg PM, Goertzen C, Kleim JA. Sensitivity of cortical movement representations to motor experience: Evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res. 2001;123(2):133–141.
  • Schmidt R, Wrisberg C. Motor Learning and Performance. 2nd ed. Champaign, IL: Human Kinetics; 2000.
  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J Speech Hearing Lang Res. 2008;51:S225–239.
  • Kozlowski DA, James DC, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996;16(15):4776–4786.
  • Nedergaard M, Astrup J. Infarct rim: Effect of hyperglycemia on direct current potential and [14q2-deoxyglucose phosphorylation. J Cereb Blood Row Metab. 1986;6:607–615.
  • Mies G, Ishimaru S, Xie Y, Seo K, Hossmann K-A. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Row Metab. 1991;11:753–761.
  • Sapolsky R, Pulsinelli W. Glucocorticoids potentiate ischemic injury to neurons therapeutic implications. Science. 1985;229:1397.
  • Dromerick A, Lang C, Powers W, et al. Very early Constraint Induced Movement Therapy (VECTORS): Phase II trial results. Presented at: International Stroke Conference; 2007; San Francisco.
  • Bland ST, Pillai RN, Aronowski J, Grotta JC, Schallert T. Early overuse and disuse of the affected forelimb after moderately severe intraluminal suture occlusion of the middle cerebral artery in rats. Behav Brain Res. 2001;126(1-2):33–41.
  • Leasure IL, Schallert T. Consequences of forced disuse of the impaired forelimb after unilateral cortical injury. Behav Brain Res. 2004;150(1-2):83–91.
  • Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D. Motor cortex stimulation enhances motor recovery and reduces pen-infarct dysfunction following ischemic insult. Neurol Res. 2003;25(8):789–793.
  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794.
  • Murphy H. Distribution of practice periods in learning. Educ Psychol. 1916;7:150–162.
  • Shea C, Lai Q, Black C., Park J-H. Spacing practice sessions across days benefits the learning of motor skills. Hum Movement Sci. 2000;19:737–760.
  • Shadmehr R, Holcomb H. Neural correlates of motor memory consolidation. Science. 1997;277:821–825.
  • Shadmehr R, Brashers-Krug T. Functional stages in the formation of human long-term motor memory. J Neurosci. 1997;17(1 ):409–419.
  • Schmidt RA, Lee TD. Motor Control and Learning: A Behavioral Emphasis. 4th ed. Champaign, IL: Human Kinetics; 2005.
  • Walker M, Brakefield T, Morgan A, Hobson JRS. Practice with sleep makes perfect: Sleep dependent motor skill learning. Neuron. 2002;35:205–211.
  • Smith C, MacNeill C. Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. J Sleep Res. 1994;3:206–213.
  • Huber R, Ghilardi M, Massimini M, G T. Local sleep and learning. Nature. 2004;430:78–81.
  • Fogel S, Smith C. Learning-dependent changes in sleep spindles and Stage 2 sleep. J Sleep Res. 2006;15:250–255.
  • Song S, Howard J Jr, Howard D. Sleep does not benefit probabilistic motor sequence learning. Neurosci. 2007;27:12475–12483.
  • Milner C, Fogel S, Cote K. Habitual napping moderates motor performance improvements following a short daytime nap. Biol Psychol. 2006;73:141–156.
  • Spencer R, Gouw A, Ivry R. Age-related decline of sleep-dependent consolidation. Learn Mem. 2007;14:480–484.
  • Espiritu J. Aging-related sleep changes. Clin Geriatr Med. 2008;24:1–14.
  • Harbison J, Ford G, James O, Gibson G. Sleep-disordered breathing following acute stroke. Q1/14. 2002;95: 741–747.
  • Dinse H. Cortical reorganization in the aging brain. Prog Brain Res. 2006;157:57–80.
  • Taub E, Uswatte G, Mark W, Morris D. The learned nonuse phenomenon: Implications for rehabilitation. Europa Medicophysica. 2006;42:241–255.
  • Taub E. Movement in nonhuman primates deprived of somatosensory feedback. Exerc Sports Sci Rev. 1977;4:335–374.
  • Taub E, Berman A. Movement and learning in the absence of sensory feedback. In: Freedman SJ, ed. The Neuropsychology of Spatially Oriented Behavior. Homewood, IL: Dorsey Press; 1968:173–192.
  • Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104(2):125–132.
  • Taub E, Miller NE, Novack TA, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74(4):347–354.
  • Morris D, Taub E, Mark VW. Constraint-induced movement therapy: Characterizing the intervention protocol. Europa Medicophysica. 2006;42:257–268.
  • Bonaiuti D, Rebasti L, Sioli P. The Constraint-Induced Movement Therapy: A systematic review of randomized controlled trials on the adult stroke patients. Europa Medicophysica. 2007;43:139–146.
  • Liepert J, Uhde I, Graf S., Leidner 0, Weiller C. Motor cortex plasticity during forced-use therapy in stroke patients: A preliminary study. J Neurol. 2001;248(4):315–321.
  • Liepert J. Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cog Behav Neurol. 2006; 19(1 ):41–47.
  • Levy CE, Nichols DS, Schmalbrock PM, Keller P, Chakeres DW. Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy. Am J Phys Med Rehabil. 2001;80:4–12.
  • Mark VW, Taub E, Morris DM. Neuroplasticity and Constraint-Induced Movement Therapy. Europa Medicophysica. 2006;42:269–284.
  • van der Lee J, Wagenaar R, Lankhorst G, Vogelaar T, Devine W, Bouter LN. Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke. 1999;30:2369–2375.
  • Caimmi M, Carda S, Giovanzana C, et al. Using kinematic analysis to evaluate Constraint-Induced Movement Therapy in chronic stroke patients. Neurorehabil Neural Repair. 2007;22:31–39.
  • Wu C, Chen C, Tsai W, Lin K, Chou S. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: Changes in motor impairment, daily functioning, and quality of life. Arch Phys Med Rehabil. 2007;88:273–278.
  • Page S, Levine P, Leonard A, Szaflarski JP, Kissela BM. Modified Constraint-Induced Therapy in chronic stroke: Results of a single-blinded Randomized Controlled Trial. Phys Ther. 2008;88:1–8.
  • Dettmers C, Teske U, Hamzei F, Uswatte G, Taub E, Weiller C. Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Arch Phys Med Rehabil. 2005;86(2):204–209.
  • Dromerick AW, Edwards DF, Hahn M. Does the application of Constraint-Induced Movement Therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke. 2000;31:2984–2988
  • Lum PS, Taub E, Schwandt D, Postman M, Hardin P, Uswatte G. Automated Constraint-Induced Therapy Extension (AutoCITE) for movement deficits after stroke. Rehabil Res Dev. 2004;41 (3A):249–258.
  • Dobkin BH. Interpreting the randomized clinical trial of Constraint-Induced Movement Therapy. Arch Neurol. 2007;64:336–338.
  • Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1 ):75–87.
  • Lum P, Burgar C, Shor P. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12:186–194.
  • Fasoli S, Krebs H, Stein J, Frontera W, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84(4):477–482.
  • Colombo R, Pisano F, Micera S, et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):311–324.
  • Kwakkel G, Kollen B, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil Neural Repair. 2007; Epub ahead of press.
  • Reinkensmeyer D, Kahn L, Averbuch M., McKenna-Cole A., Schmit B, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM Guide. J Rehabil Res Dev. 2000;37(6):653–662.
  • Lum P, Burgar C, Shor P, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–959.
  • Kahn L, Lum P, Rymer W, Reinkensmeyer D. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? Rehabil Res Dev. 2006;43(5):619–630.
  • Prange G, Jannink M, Groothuis-Oudshoorn C., Hermens H., ljzerman M. Systematic review of the effect of robot-aided therapy on the recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–184.
  • Masiero S, Celia A, Rosati G, Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil. 2007;88:142–149.
  • Volpe B, Krebs H, Hogan N, Edelstein L, Diels C, Aisen M. A novel approach to stroke rehabilitation. Robot-aided sensorimotor stimulation. Neurology. 2000;54:1938–1944.
  • Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999;53(8):1874–1876.
  • Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil. 2004;83(9):720–728.
  • Wu CW, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LG. Enduring representational plasticity after somatosensory stimulation. Neuroimage. 2005;27(4):872–884.
  • Chae J, Hart R. Comparison of discomfort associated with surface and percutaneous intramuscular electrical stimulation for persons with chronic hemiplegia. Am J Phys Med Rehabil. 1998;77(6):516–522.
  • Chae J, Bethoux F, Bohine T, Dobos L, Davis T, Friedl A. Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke. 1998;29(5):975–979.
  • Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res. 2004;154(4):450–460.
  • Linn SL, Granat MH, Lees KR. Prevention of shoulder subluxation after stroke with electrical stimulation. Stroke. 1999;30:963–968.
  • McDonnell MN, Hillier SL, Miles TS, Thompson PD, Ridding MC. Influence of combined afferent stimulation and task-specific training following stroke: a pilot randomized controlled trial. Neurorehabil Neural Repair. 2007;21 (5):435–443.
  • Powell J, Pandyan AD, Granat M, Cameron M, Stott DJ. Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke. 1999;30(7):1384–1389.
  • Yu DT, Chae J, Walker ME, Hart RL, Petroski GF. Comparing stimulation-induced pain during percutaneous (intramuscular) and transcutaneous neuromuscular electric stimulation for treating shoulder subluxation in hemiplegia. Arch Phys Med Rehabil. 2001;82(6):756–760.
  • Yozbatiran N, Donmez B, Kayak N, Bozan O. Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia. Clin Rehabil. 2006;20(1):4–11.
  • de Kroon JM, Lankhorst G, Zilvold G. Electrical stimulation of the upper limb in stroke: Stimulation of the extensors of the hand versus alternate stimulation of the flexors and extensors. Am J Phys Med Rehabil. 2004;83:592–600.
  • Church C, Price C, Pandyan AD, Huntley S, Curless R, Rodgers H. Randomized controlled trial to evaluate the effect of surface neuromuscular electrical stimulation to the shoulder after acute stroke. Stroke. 2006;37(12):2995–3001.
  • Page SJ, Chae J. Surface electrical stimulation for the affected shoulder after stroke: Reconsidering the findings of church and colleagues. Stroke. 2007;38(8):e71; author reply e72–73.
  • Chae J, Ng A, Yu DT, et al. Intramuscular electrical stimulation for shoulder pain in hemiplegia: Does time from stroke onset predict treatment success? Neurorehabil Neural Repair. 2007;21 (6):561–567.
  • Chae J, Yu DT, Walker ME, et al. Intramuscular electrical stimulation for hemiplegic shoulder pain: A 12-month follow-up of a multiple-center, randomized clinical trial. Am J Phys Med Rehabil. 2005;84(11):832–842.
  • Ring H, Rosenthal N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med. 2005;37(1):32–36.
  • Hedman LD, Sullivan JE, Hilliard MJ, Brown DM. Neuromuscular electrical stimulation during task-oriented exercise improves arm function for an individual with proximal arm dysfunction after stroke. Am J Phys Med Rehabil. 2007;86(7):592–596.
  • Hendricks HT, German MJ, de Kroon JR, Groen FA, Zilvold G. Functional electrical stimulation by means of the 'Ness Handmaster Orthosis' in chronic stroke patients: An exploratory study. Clin Rehabil. 2001;15(2):217–220.
  • Alon G, Sunnerhagen KS, Geurts AC, Ohry A. A home-based,self-ad ministered stimulation program to improve selected hand functions of chronic stroke. NeuroRehabilitation. 2003;18(3):215–225.
  • Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: A pilot study. Neurorehabil Neural Repair. 2007;21(3):207–215.
  • Alon G, McBride K, Ring H. Improving selected hand functions using a noninvasive neuroprosthesis in persons with chronic stroke. J Stroke Cerebrovasc Dis. 2002;11(2):99–106.
  • Gritsenko V, Prochazka A. A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function. Arch Phys Med Rehabil. 2004;85(6):881–885.
  • Kowalczewski J, Gritsenko V, Ashworth N, Ellaway P, Prochazka A. Upper-extremity functional electric stimulation-assisted exercises on a workstation in the subacute phase of stroke recovery. Arch Phys Med Rehabil. 2007;88(7):833–839.
  • Popovic MB, Popovic DB, Sinkjaer T, Stefanovic A, Schwirtlich L. Clinical evaluation of Functional Electrical Therapy in acute hemiplegic subjects. Rehabil Res Dev. 2003;40(5):443–453.
  • Popovic DB, Popovic MB, Sinkjaer T, Stefanovic A, Schwirtlich L. Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: A cross-over study. Can J Physiol Pharmacol. 2004;82(8-9):749–756.
  • Hara Y, Ogawa S, Muraoka Y. Hybrid power-assisted functional electrical stimulation to improve hemiparetic upper-extremity function. Am J Phys Med Rehabil. 2006;85(12):977–985.
  • Sullivan J, Hedman L. Effects of home-based sensory and motor amplitude electrical stimulation on arm dysfunction in chronic stroke. Clin Rehabil. 2007;21:142–150.
  • Francisco G, Chael, Chawla H, et al. Electromyog ram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: A randomized pilot study. Arch Phys Med Rehabil. 1998;79(5):570–575.
  • Cauraugh J, Light K, Kim S, Thigpen M, Behrman A. Chronic motor dysfunction after stroke: Recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke. 2000;31(6):1360–1364.
  • Armagan 0, Tasciog lu F, Oner C. Electromyographic biofeedback in the treatment of the hemiplegic hand: A placebo-controlled study. Am J Phys Med Rehabil. 2003;82(11):856–861.
  • Gabr U, Levine P, Page SJ. Home-based electromyography-triggered stimulation in chronic stroke. Clin Rehabil. 2005;19(7):737–745.
  • Dickstein R, Hocherman S, Pillar T, Shaham R. Stroke rehabilitation: Three exercise therapy approaches. Phys Ther. 1986;66(8):1233–1238.
  • Langhammer B, Stranghelle J. Bobath or Motor Relearning Programme? A comparison of two different approaches of physiotherapy in stroke rehabilitation: A randomized controlled study. Clin Rehabil. 2000;14:361–369.
  • van Vliet P, Lincoln N, Foxall A. Comparison of Bobath based and movement science based treatment for stroke: A randomised controlled trial. J Neurol Neurosurg Psychiatry. 2005;76:503–508.
  • Butefisch C, Hummelsheim H, Denzler P., Mauritz K-H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59–68.
  • Hafsteinsdottir T, Algra A, Kappelle L, Grypdonck M. Neurodevelopmental treatment after stroke: A comparative study. J Neurol Neurosurg Psychiatry. 2005;76(6):788–792.
  • Platz T, van Kaick S, Engel U, Pinkowski C, Kalok S, Pause M. Impairment-oriented training or Bobath therapy for severe arm paresis after stroke: A single-blind, multicentre randomized controlled trial. Clin Rehabil. 2005;19:714–724.
  • Luke C, Dodd K, Brock K. Outcomes of the Bobath concept on upper limb recovery following stroke. Clin Rehabil. 2004;18:888–898.
  • Kelso J. Pattern formation in speech and limb movements involving many degrees of freedom. Exp Brain Res. 1986;15:105–128.
  • Cardoso de Oliveira S, Gribova A, Donchin O, Bergman H, E V. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements. Eur J Neurosci. 2001;14:1881–1896.
  • Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y. Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci. 1997;17:9667–9674.
  • Toyokura M, Muro I, Komiya T, Obara M. Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: Analysis using functional magnetic resonance imaging. Brain Res Bull. 1999;48:211–217.
  • Gerloff C, Andres F. Bimanual coordination and interhemispheric interaction. Acta Psychology (Amst). 2002;110:161–186.
  • Cuadrado M, Arias J. Bilateral movement enhances ipsilesional cortical activity in acute stroke: A pilot functional MRI study. Neurology. 2001;57:1740–1741.
  • Stinear J, Byblow W. Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements. J Physiol. 2002;543:307–316.
  • Stewart KC, Cauraugh JFI, Summers JJ. Bilateral movement training and stroke rehabilitation: A systematic review and meta-analysis. J Neurol Sci. 2006;244(1-2):89–95.
  • Lewis GN, Byblow WD. Neurophysiological and behavioural adaptations to a bilateral training intervention in individuals following stroke. Clin Rehabil. 2004; 18(1):48–59.
  • Lum P, Burgar C, Van der Loos M, Shor P, Majmundar M, Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev. 2006;43(5):631–642.
  • Mudie MH, Matyas TA. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil. 2000;22(1-2):23–37.
  • Platz T, Bock S, Prass K. Reduced skillfulness of arm motor behaviour among motor stroke patients with good clinical recovery: Does it indicate reduced automaticity? Can it be improved by unilateral or bilateral training? Neuropsychologia. 2001;39(7):687–698.
  • Driskel J, Copper C, Moran A. Does mental practice enhance performance? J Appl Psychol. 1994;79:481–492.
  • Janssen J, Sheikh A. Enhancing athletic performance through imagery an overview. In: Sheikh AA, Korn ER, eds. Imagery in Sports and Physical Performance. Amityville, NY: Baywood Publishing Company; 1994:1–22.
  • Decety J. The neuropsychological basis of motor imagery. Behav Brain Res. 1996;77:45–52.
  • Page SJ, Levine P, Sisto SA, Johnston MV. Mental practice combined with physical practice for upper-limb motor deficit in subacute stroke. Phys Ther. 2001;81(8):1455–1462.
  • Page S, Levine P, Leonard A. Mental practice in chronic stroke. Results of a randomized, placebo-controlled trial. Stroke. 2007;38:1293–1297.
  • Page S. Imagery improves upper extremity motor function in chronic stroke patients: A pilot study. Occup Then J Res. 2000;20(3):200–215.
  • Dijkerman HC, Letswaart M, Johnston M, MacWalter RS. Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clin Rehabil. 2004;18(5):538–549.
  • Deschaumes-Molinaro C, Dittmar A, Vernet-Maury E. Relationship between mental imagery and sporting performance. Behav Brain Res. 1991;45:29–36.
  • Trojano L, Grossi D. A critical review of mental imagery defects. Brain Cogn. 1994;24(2):213–243.
  • Muelbacher W, Richards C, Ziemann U, et al. Improving hand function in chronic stroke. Arch Neurol. 2002;59:1278–1282.
  • Floel A, Nagorsen U, Werhahn KJ, et al. Influence of somatosensory input on motor function in patients with chronic stroke. Ann Neurol. 2004;56(2):206–212.
  • Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke. 1995;26:2254–2259.
  • Martinsson L, Wahlgren N. Safety of dexamphetamine in acute ischemic stroke: A randomized, double-blind, controlled dose-escalation trial. Stroke. 2003;34:475–481.
  • Gladstone D, Danells C, Armesto A, et al. Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: A randomized, double-blind, placebo-controlled trial. Stroke. 2006;37:179–185.
  • Malcolm MP, Triggs WI, Light KE, et al. Repetitive transcranial magnetic stimulation as an adjunct to constraint-induced therapy: An exploratory randomized controlled trial. Am J Phys Med Rehabil. 2007;86(9):707–715.
  • Northstar Neuroscience I. Northstar Neuroscience Announces Primary Endpoint Results of EVEREST Clinical Trial. Jan. 22, 2008. Available at: http://ir.northstarneuro.com/phoenix.zhtml?c=19726761p=irol-newsArticle&ID=109840361highlight=. Accessed February 6, 2008.
  • Platz T, Kim I, Engel U, Pinkowski C, Eickhof C, Kutzner M. Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: Interim analysis and termination of a double blind, randomised, placebo-controlled trial. Restor Neurol Neurosci. 2005;23:271–280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.