60
Views
4
CrossRef citations to date
0
Altmetric
Technical Paper

Common Features of Core Electron-Root Confinement in Helical Devices

, , , , , , , , , , , , & show all
Pages 327-342 | Published online: 27 Mar 2017

REFERENCES

  • R. C. WOLF, “Internal Transport Barriers in Tokamak Plasmas,” Plasma Phys. Control. Fusion, 45, R1 (2003).
  • J. W. CONNOR et al., “A Review of Internal Transport Barrier Physics for Steady-State Operation of Tokamaks,” Nucl. Fusion, 44, R1 (2004).
  • K. IDA et al., “Comparison of Electron Internal Transport Barriers in the Large Helical Device and JT-60U Plasmas,” Plasma Phys. Control. Fusion, 46, A45 (2004).
  • A. A. GALEEV and R. Z. SAGDEEV, “Theory of Neoclassical Diffusion, Chapter 2: Toroidal Stellarators,” Rev. Plasma Phys., 7, 307 (1977).
  • L. M. KOVRIZHNYKH, “Neoclassical Theory of Transport Processes in Toroidal Magnetic Confinement Systems, with Emphasis on Non-Axisymmetric Configurations,” Nucl. Fusion, 24, 851 (1984).
  • G. GRIEGER et al., “Physics and Engineering Studies for WENDELSTEIN 7-X,” Proc. 13th Int. Conf. Plasma Physics Controlled Nuclear Fusion Research, Washington, 1990, Vol. 3, p. 525, International Atomic Energy Agency (1991).
  • A. F. ALMAGRI, D. T. ANDERSON, and J. N. TAL-MADGE, “A Helically Symmetric Stellarator (HSX),” IEEE Trans. Plasma Sci., 27, 114 (1999).
  • G. H. NEILSON et al., “Physics Issues in the Design of High-Beta, Low-Aspect-Ratio Stellarator Experiments,” Phys. Plasmas, 7, 1911 (2000).
  • S. GORI, W. LOTZ, and J. NÜHRENBERG, “Quasi-Isodynamic Stellarators,” Theory of Fusion Plasmas (Varenna 1996), p. 335, Editrice Compositori, Bologna (1996).
  • T. ESTRADA et al., “Electron Internal Transport Barrier Formation and Dynamics in the Plasma Core of the TJ-II Stellarator,” Plasma Phys. Control. Fusion, 46, 277 (2004).
  • A. FUJISAWA et al., “Active Trajectory Control for a Heavy Ion Beam Probe on the Compact Helical System,” Rev. Sci. Instrum., 67, 3099 (1996).
  • A. FUJISAWA et al., “Experimental Study of Plasma Confinement and Heating Efficiency Through Potential Profile Measurements with a Heavy Ion Beam Probe in the Compact Helical System,” Proc. 16th Int. Conf. Fusion Energy, Montreal, 1996, Vol. 2, p. 41, International Atomic Energy Agency (1997).
  • A. FUJISAWA et al., “Electric Field Bifurcation and Transition in the Core Plasma of CHS,” Plasma Phys. Control. Fusion, 40, 627 (1998).
  • A. FUJISAWA et al., “Transport Barrier Formation and Bifurcation Patterns of Potential Profiles in the Compact Helical System Heliotron/Torsatron,” Plasma Phys. Control. Fusion, 42, A103 (2000).
  • H. MAAßBERG et al., “The Neoclassical ‘Electron-Root’ Feature in W7-AS,” Europhysics Conference Abstracts: 24th Conf. Controlled Fusion and Plasma Physics, Berchtesgaden, Germany, 1997, Vol. 21A, part IV, p. 1605, European Physical Society.
  • J. BALDZUHN, M. KICK, H. MAAßBERG, and W7-AS TEAM, “Measurement and Calculation of the Radial Electric Field in the Stellarator W7-AS,” Plasma Phys Control. Fusion, 40, 967 (1998).
  • Y. TAKEIRI et al., “Formation of Electron Internal Transport Barrier and Achievement of High Ion Temperature in Large Helical Device,” Phys. Plasmas, 10, 1788 (2003).
  • F. CASTEJON et al., “Enhanced Heat Confinement in the Flexible Heliac TJ-II,” Nucl. Fusion, 42, 271 (2002).
  • K. IDA et al., “Characteristics of Transport in Electron Internal Transport Barriers and in the Vicinity of Rational Surfaces in the Large Helical Device,” Phys. Plasmas, 11, 2551 (2004).
  • F. CASTEJON et al., “Influence of Low-Order Rational Magnetic Surfaces on Heat Transport in TJ-II Heliac ECRH Plasmas,” Nucl. Fusion, 44, 593 (2004).
  • C. D. BEIDLER and W. N. G. HITCHON, “Ripple Transport in Helical-Axis Advanced Stellarators: A Comparison with Classical Stellarator/Torsatrons,” Plasma Phys. Control. Fusion, 36, 317 (1994).
  • H. E. MYNICK and W. N. G. HITCHON, “Effect of the Ambipolar Potential on Stellarator Confinement,” Nucl. Fusion, 23, 1053 (1983).
  • W. I. VAN RIJ and S.P. HIRSHMAN, “Variational Bounds for Transport Coefficients in Three-Dimensional Toroidal Plasmas,” Phys. Fluids B, 1, 563 (1989).
  • V. TRIBALDOS, “Monte Carlo Estimation of Neoclassical Transport for the TJ-II Stellarator,” Phys. Plasmas, 8, 1229 (2001).
  • S. MURAKAMI et al., “Neoclassical Transport Optimization of LHD,” Nucl. Fusion, 42, L19 (2002).
  • V. V. NEMOV, S. V. KASILOV, W. KERNBICHLER, and M. F. HEYN, “Evaluation of 1/ν Neoclassical Transport in Stellarators,” Phys. Plasmas, 6, 4622 (1999).
  • C. D. BEIDLER et al., “Neoclassical Transport in Stellarators—Results from an International Collaboration,” Europhysics Conference Abstracts: 30th Conf. Controlled Fusion and Plasma Physics, St. Petersburg, 2003, European Physical Society.
  • K. IDA et al., “Reduction of Ion Thermal Diffusivity Associated with the Transition of the Radial Electric Field in Neutral-Beam-Heated Plasmas in the Large Helical Device,” Phys. Rev. Lett., 86, 5297 (2001).
  • S. K. CHAN, “Steady-State Kinetics of Diffusionless First Order Phase Transformations,” J. Chem. Phys., 67, 5755 (1977).
  • H. MAAßBERG et al., “Experimental and Neoclassical Electron Heat Transport in the LMFP Regime for the Stellarators W7-A, L-2, and W7-AS,” Phys. Fluids B, 5, 3627 (1993).
  • K. UO, “The Confinement of Plasma by the Heliotron Magnetic Field,” J. Phys. Soc. Japan, 16, 1380 (1961).
  • H. E. MYNICK, T. K. CHU, and A. H. BOOZER, “Class of Model Stellarator Fields with Enhanced Confinement,” Phys. Rev. Lett., 48, 322 (1982).
  • M. YOKOYAMA and K. Y. WATANABE, “The Role of the Bumpy Field for the Ripple Diffusion in Strongly Inward Shifted Configurations in LHD,” Nucl. Fusion, 45, 1600 (2005).
  • V. TRIBALDOS and B.Ph. VAN MILLIGEN, “Electron Cyclotron Emission Calculations for TJ-II Stellarator,” Nucl. Fusion, 36, 283 (1996).
  • V. TRIBALDOS et al., “Electron Cyclotron Heating and Current Drive in the TJ-II Stellarator,” Plasma Phys. Control. Fusion, 40, 2113 (1998).
  • R. C. GOLDFINGER and D. B. BATCHELOR, “Theory of Electron Cyclotron Heating in the ATF Torsatron,” Nucl. Fusion, 27, 31 (1987).
  • H. IDEI et al., “Formation of Positive Radial Electric Field by Electron Cyclotron Heating in Compact Helical System,” Phys. Plasmas, 1, 3400 (1994).
  • S. KUBO et al., “Extension and Characteristics of an ECRH Plasma in LHD,” Plasma Phys. Control. Fusion, 47, A81 (2005).
  • E. WESTERHOF, “Wave Propagation Through an Electron Cyclotron Resonance Layer,” Plasma Phys. Control. Fusion, 39, 1015 (1997).
  • M. A. BALAKINA, O. B. SMOLYAKOVA, and M. D. TOKMAN, “Numerical Simulations of Tangential Microwave Launching for EC Heating in a Tokamak,” Plasma Phys. Rep., 29, 53 (2003).
  • Y. TAKEIRI et al., “Electron ITB Formation with Combination of NBI and ECH in LHD,” Fusion Sci. Technol., 46, 106 (2004).
  • T. MINAMI et al., “Increased Understanding of Neoclassical Internal Transport Barriers in CHS,” Nucl. Fusion, 44, 342 (2004).
  • U. GASPARINO et al., “Studies on Electron Cyclotron Heating at the Wendelstein VII-A/AS Stellarators,” Plasma Phys. Control. Fusion, 30, 283 (1988).
  • V. TRIBALDOS and J. GUASP, “Neoclassical Global Flux Simulations in Stellarators,” Plasma Phys. Control. Fusion, 47, 545 (2005).
  • M. ROMÉ et al., “Kinetic Modelling of the ECRH Power Deposition in W7-AS,” Plasma Phys. Control. Fusion, 39, 117 (1997).
  • S. MURAKAMI et al., “5D Simulation Study of Supra-thermal Electron Transport in Non-Axisymmetric Plasmas,” Proc. 17th Fusion Energy Conf., Yokohama, Japan, 1998, Vol. 4, p. 1383, International Atomic Energy Agency (1999).
  • K. IDA et al., “Characteristics of Electron Heat Transport of Plasma with an Electron Internal-Transport Barrier in the Large Helical Device,” Phys. Rev. Lett., 91, 085003 (2003).
  • T. SHIMOZUMA et al., “Formation of Electron Internal Transport Barriers by Highly Localized Electron Cyclotron Resonance Heating in the Large Helical Device,” Plasma Phys. Control. Fusion, 45, 1183 (2003).
  • H. MAAßBERG et al., “The Neoclassical ‘Electron Root’ Feature in the Wendelstein-7-AS Stellarator,” Phys. Plasmas, 7, 295 (2000).
  • B. ZURRO et al., “Comparison of Impurity Poloidal Rotation in ECRH and NBI Discharges of the TJ-II Heliac,” Fusion Sci. Technol., 50, 419 (2006).
  • H. YAMADA et al., “Characterization of Energy Confinement in Net-Current Free Plasmas Using the Extended International Stellarator Database,” Nucl. Fusion, 45, 1684 (2005).
  • M. ROMÉ et al., “The ‘Electron-Root’ Feature in the WENDELSTEIN-7-AS Stellarator with ECRH in O1-Mode Compared to X2-Mode,” Plasma Phys. Control. Fusion, 48, 353 (2006).
  • S. MURAKAMI et al., “5-D Simulation Study of Supra-thermal Electron Transport in Non-Axisymmetric Plasmas,” Nucl. Fusion, 40, 693 (2000).
  • M. YOKOYAMA et al., “Towards Improved Confinement: Analysis of the Radial Electric Field in LHD,” Nucl. Fusion, 42, 143 (2002).
  • S. V. KASILOV, W. KERNBICHLER, V. V. NEMOV, and M. F. HEYN, “Mapping Technique for Stellarators,” Phys. Plasmas, 9, 3508 (2002).
  • S. MURAKAMI et al., “A Demonstration of Magnetic Field Optimization in LHD,” Proc. 19th Fusion Energy Conf., Lyon, France, 2002, International Atomic Energy Agency.
  • C. D. BEIDLER and W.D. D’HAESELEER, “A General Solution of the Ripple-Averaged Kinetic Equation (GSRAKE),” Plasma Phys. Control. Fusion, 37, 463 (1995).
  • U. STROTH et al., “Internal Transport Barrier Triggered by Neoclassical Transport in W7-AS,” Phys. Rev. Lett., 86, 5910 (2001).
  • A. FUJISAWA et al., “Dynamic Behavior of Potential in the Plasma Core of the CHS Heliotron/Torsatron,” Phys. Rev. Lett., 79, 1054 (1997).
  • A. FUJISAWA et al., “Electric Pulsation and Profile Quantization in CHS Heliotron/Torsatron,” Plasma Phys. Control. Fusion, 41, A561 (1999).
  • A. FUJISAWA et al., “Experimental Study of the Bifurcation Nature of the Electrostatic Potential of a Toroidal Helical Plasma,” Phys. Plasmas, 7, 4152 (2000).
  • Ch. FUCHS et al., “Shafranov Shift in the ‘Electron Root’ Feature at the W7-AS Stellarator,” Fusion Eng. Des., 53, 309 (2001).
  • T. ESTRADA et al., “Electron Internal Transport Barriers and Magnetic Topology in the Stellarator TJ-II,” Fusion Sci. Technol., 50, 127 (2006).
  • N. J. LOPES CARDOZO et al., “Electron Thermal Transport in RTP: Filaments, Barriers and Bifurcations,” Plasma Phys. Control. Fusion, 39, B303 (1997).
  • G. GORINI et al., “Transient Transport Barriers in Ohmic and Electron Cyclotron Heated RTP Plasmas: Relation with Rational Magnetic Surfaces,” Plasma Phys. Control. Fusion, 42, A161 (2000).
  • S. V. KASILOV et al., “On the ‘Magnetic’ Nature of Electron Transport Barriers in Tokamaks,” Plasma Phys. Control. Fusion, 44, 985 (2002).
  • H. WOBIG and D. PFIRSCH, “On Guiding Centre Orbits of Particles in Toroidal Systems,” Plasma Phys. Control. Fusion, 43, 695 (2001).
  • K. C. SHAING et al., “Plasma and Momentum Transport Processes in the Vicinity of a Magnetic Island in a Tokamak,” Nucl. Fusion, 43, 258 (2003).
  • V. N. KALYUZHNYJ and V. V. NEMOV, “Calculations of 1/ν Transport in an l = 3 Stellarator Magnetic Field in the Presence of Magnetic Islands Caused by Magnetic System Errors,” Fusion Sci. Technol., 46, 248 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.