175
Views
32
CrossRef citations to date
0
Altmetric
Technical Paper

Chapter 6: Active Spectroscopy

, , , , &
Pages 487-527 | Published online: 27 Mar 2017

References

  • M. Sasao et al., “Ion Sources for Fusion Plasma Diagnostics,” (invited paper), IEEE Trans. Plasma Sci., 33, 6, 1872 (2005).
  • W. Horton, “Drift Waves and Transport,” Rev. Mod. Phys., 71, 735 (1999).
  • B.A. Carreras, “Progress in Anomalous Transport Research in Toroidal Magnetic Confinement Devices,” IEEE Trans. Plasma Sci., 25, 1281 (1997).
  • R.J. Fonck, P.A. Dupperex, and S.F. Paul, “Plasma Fluctuation Measurements in Tokamaks Using Beam-Plasma Interactions,” Rev. Sci. Instrum., 61, 3487 (1990).
  • W. Mandl et al., “Beam Emission Spectroscopy as a Comprehensive Plasma Diagnostic Tool,” Plasma Phys. Control. Fusion, 35, 1373 (1993).
  • M.G. Von Hellermann et al., “Progress in Charge Exchange Recombination Spectroscopy (CXRS) and Beam Emission Spectroscopy (BES) for ITER,” Proc. 29th EPS Conference, Montreux, Switzerland, June 17–21, 2002, ECA Vol. 26B, O-5.07 (2002).
  • I.H. Hutchinson, “Excited-State Populations in Neutral Beam Emission,” Plasma Phys. Control. Fusion, 44, 71 (2002).
  • T.A. Gianakon et al., “Effects of Edge Plasma Turbulence on Radial Correlation Length Measurements with BES,” Rev. Sci. Instrum., 63, 4931 (1992).
  • M.G. Von Hellermann et al., “Recent Progress in Beam Emission and CX Spectroscopy,” Advanced Diagnostics for Magnetic and Inertial Fusion, P. Stott et al., Eds., p. 205, Kluwer Academic/Plenum Publishers, New York (2002).
  • H.P. Summers, ADAS Users Manual Version 2.1, University of Strathclyde, Glasgow, Scotland (1999); available on the Internet at http://adas.phys.strath.ac.uk/.
  • H. Anderson et al., “Neutral Beam Stopping and Emission in Fusion Plasmas I: Deuteriun Beams,” Plasma Phys. Control. Fusion, 42, 781 (2000).
  • R.K. Janev, C.D. Boley, and D.E. Post, “Penetration of Energetic Neutral Beams into Fusion Plasmas,” Nucl. Fusion, 29, 2125 (1989).
  • D.K. Gupta et al., “Enhanced Sensitivity Beam Emission Spec-troscopy System for Nonlinear Turbulence Measurements,” Rev. Sci. Instrum., 75, 3493 (2004).
  • G.R. Mckee et al., “The Nondimensional Scaling of Turbulence Characteristics and Turbulent Diffusivity,” Nucl. Fusion, 41, 1235 (2001).
  • S.F. Paul et al., “Measurements of Long-Wavelength Density Fluctuations in TFTR,” Phys. Fluids B, 4, 2922 (1992).
  • R.D. Durst et al., “Observation of a Localized Transition from Edge to Core Density Turbulence in the TFTR Tokamak,” Phys. Rev. Lett., 71, 3135 (1993).
  • W.L. Rowan et al., “Charge-Exchange Recombination Spec-troscopy and Beam-Emission Spectroscopy for C-Mod,” Rev. Sci. In-strum., 70, 882 (1999).
  • M.W. Shafer et al., “Spatial Transfer Function for the Beam Emission Spectroscopy Diagnostic on DIII-D,” Rev. Sci. Instrum., 77, 10F110 (2006).
  • R.V. Bravenec and W.M. Nevins, “System for Simulating Fluctuation Diagnostics for Application to Turbulence Computations,” Rev. Sci. Instrum., 11, 015101 (2006).
  • R.J. Fonck et al., “Low-Noise Photodiode Detector for Optical Fluctuation Diagnostics,” Rev. Sci. Instrum., 63, 4924 (1992).
  • R.J. Fonck et al., “Long-Wavelength Density Turbulence in the TFTR Tokamak,” Phys. Rev. Lett., 10, 3736 (1993).
  • C. Fenzi et al., “2D Turbulence Imaging in DIII-D Via Beam Emission Spectroscopy,” Rev. Sci. Instrum., 12, 988 (2001).
  • G.R. Mckee, C. Fenzi, and R.J. Fonck, “Images of Turbulence in a Tokamak Plasma,” IEEE Trans. Plasma Sci., 30, 62 (2002).
  • G.R. Mckee et al., “Turbulence Imaging and Applications Using Beam Emission Spectroscopy on DIII-D,” Rev. Sci. Instrum., 14, 2014 (2003).
  • G.R. Mckee et al., “High-Sensitivity Beam Emission Spectroscopy for Core Plasma Turbulence Imaging,” Rev. Sci. Instrum. (2006) (accepted for publication).
  • S.J. Zweben et al., “Edge Turbulence Imaging in the Alcator C-Mod Tokamak,” Phys. Plasmas, 9, 1981 (2002).
  • R.J. Maqueda et al., “Gas Puff Imaging of Edge Turbulence,” Rev. Sci. Instrum., 14, 2020 (2003)(invited).
  • S.F. Paul and R.J. Fonck, “Neutral Beam Emission Spectroscopy Diagnostic for Measurement of Density Fluctuations on the TFTR Tokamak,” Rev. Sci. Instrum., 61, 3496 (1990).
  • R.D. Durst et al., “Density Fluctuation Measurements Via Beam Emission Spectroscopy”, Rev. Sci. Instrum., 63, 4907 (1992)(invited).
  • R.D. Durst et al., “Measurements of the Radial Structure and Poloidal Spectra of Toroidal Alfvén Eigenmodes in the Tokamak Fusion Test Reactor,” Phys. Fluids B, 4, 3707 (1992).
  • J.S. Kim et al., “Technique for the Experimental Estimation of Nonlinear Energy Transfer in Fully Developed Turbulence,” Phys. Plasmas, 3, 3998 (1996).
  • J.S. Kim et al., “Measurements of Nonlinear Energy Transfer in Turbulence in the Tokamak Fusion Test Reactor,” Phys. Rev. Lett., 19, 841 (1997).
  • H. Evensen et al., “Optical Fluctuation Measurements of Turbulence Using a Diagnostic Beam on Phaedrus-T,” Rev. Sci. Instrum., 63, 4928 (1992).
  • R.D. Durst et al., “Optical Measurements of Core Density Fluctuations in TEXT-U Using a Helium Metastable Beam,” Rev. Sci. Instrum., 66, 842 (1995).
  • G. Mckee et al., “The Beam Emission Spectroscopy Diagnostic on the DIII-D Tokamak,” Rev. Sci. Instrum., 10, 913 (1999).
  • G. Mckee et al., “Impurity-Induced Suppression of Core Turbulence and Transport in the DIII-D Tokamak,” Phys. Rev. Lett., 84, 1922 (2000).
  • M. Murakami et al., “Physics of Confinement Improvement of Plasmas with Impurity Injection in DIII-D,” Nucl. Fusion, 41, 317 (2001).
  • G.R. Mckee et al., “Impurity-Induced Turbulence Suppression and Reduced Transport in the DIII-D,” Phys. Plasmas, 1, 1870 (2000).
  • R.J. Fonck, “Long-Wavelength Turbulence Measurements in Tokamak Plasmas,” Bull. Am. Phys. Soc., 44, 7, 159 (1999).
  • M. Jakubowski, R.J. Fonck, and G.R. Mckee, “Observation of Coherent Sheared Turbulence Flows in DIII-D,” Phys. Rev. Lett., 89, 265003 (2002).
  • G.R. Mckee et al., “Experimental Characterization of Coherent, Radially-Sheared Zonal Flows in the DIII-D Tokamak,” Phys. Plasmas, 10, 1712 (2003)(invited).
  • G.R. Mckee et al., “Observation and Characterization of Radially Sheared Zonal Flows in DIII-D,” Plasma Phys. Control. Fusion, 45, A477 (2003).
  • M. Jakubowski et al., “Wavelet-Based Time-Delay Estimation for Time-Resolved Turbulent Flow Analysis,” Rev. Sci. Instrum., 12, 996 (2001).
  • C. Holland et al., “Investigation of the Time-Delay Estimation Method for Turbulent Velocity Inference,” Rev. Sci. Instrum., 15, 4278 (2004).
  • N.P. Basse et al., “Diagnostic Systems on Alcator C-Mod,” Fusion Sci. Technol., 51, 476 (2007).
  • M. Sampsell, “Beam Emission Spectroscopy on the Alcator C-Mod Tokemak,” PhD Thesis, University of Texas-Austin (2004).
  • T. Oishi et al., “Beam Emission Spectroscopy Measurement for Density Fluctuations in Compact Helical System,” Rev. Sci. Instrum., 15, 4118 (2004).
  • T. Oishi et al., “EHO-Like Density Fluctuations Measured Using Beam Emission Spectroscopy in ETB Discharges in CHS,” Nucl. Fusion, 46, 317 (2006).
  • M. Jakubowski, “Measurement of the Turbulence Flow Field in the DIII-D Tokamak,” PhD Thesis, University of Wisconsin, Madison (2003).
  • D.J. Schlossberg et al., “Velocity Fluctuation Analysis via Dynamic Programming,” Rev. Sci. Instrum., 11, 10F518 (2006).
  • G.R. Mckee et al., “Turbulence Velocimetry of Density Fluctuation Imaging Data,” Rev. Sci. Instrum., 15, 3490 (2004).
  • T. Munsat and S.J. Zweben, “Derivation of Time-Dependent, Two-Dimensional Velocity Field Maps for Plasma Turbulence Studies,” Rev. Sci. Instrum., 11, 103501 (2006).
  • R.C. Isler, “Observation of the Reaction H0 + O8+ r H+(O7+) during Neutral-Beam Injection into ORMAK,” Phys. Rev. Lett., 38, 1359 (1977).
  • R.J. Fonck et al., “Plasma Ion Temperature Measurements Via Charge Exchange Recombination Radiation,” Appl. Phys. Lett., 42, 239 (1983).
  • R.J. Groebner et al., “Measurements of Plasma Ion Temperature and Rotation Velocity Using the He II 4686-A Line Produced by Charge Transfer,” Appl. Phys. Lett., 43, 920 (1983).
  • R.J. Fonck, D.S. Darrow, and K.P. Jaehnig, “Determination of Plasma-Ion Velocity Distribution Via Charge-Exchange Recombination Spectroscopy,” Phys. Rev. A, 29, 3288 (1984).
  • R.P. Seraydarian et al., “Multichordal Charge Exchange Recombination Spectroscopy on the Doublet III Tokamak,” Rev. Sci. Instrum., 51, 155 (1986).
  • R.P. Seraydarian and K.H. Burrell, “Multichordal Charge-Exchange Recombination Spectroscopy on the DIII-D Toka-mak,” Rev. Sci. Instrum., 51, 2012 (1986).
  • R.P. Seraydarian, K.H. Burrell, and R.J. Groebner, “Multichordal Visible/Near-UV Spectroscopy on the DIII-D Tokamak,” Rev. Sci. Instrum., 59, 1530 (1988).
  • K. Ida and S. Hidekuma, “Space- and Time-Resolved Measurements of Ion Temperature with the CVI 5292-A Charge-Exchange Recombination Line After Subtracting Background Radiation,” Rev. Sci Instrum, 60, 867 (1989).
  • A. Boileau et al., “The Deduction of Low-Z Ion Temperature and Densities in the JET Tokamak Using Charge Exchange Recombination Spectroscopy,” Plasma Phys. Control. Fusion, 31, 779 (1989).
  • R.J. Groebner, K.H. Burrell, and R.P. Seraydarian, “Role of Edge Electric Field and Poloidal Rotation in the L-H Transition,” Phys. Rev. Lett., 64, 3015 (1990).
  • R.J. Groebner et al., “Spectroscopic Study of Edge Poloidal Rotation and Radial Electric Fields in the DIII-D Tokamak,” Rev. Sci. Instrum., 61, 2920 (1990)(invited).
  • P. Gohil et al., “High Spatial and Temporal Resolution Visible Spectroscopy of the Plasma Edge in DIII-D,” Rev. Sci. Instrum., 61, 2949 (1990).
  • M.G. Von Hellermann et al., “Visible Charge Exchange Spectroscopy at JET,” Rev. Sci. Instrum., 61, 3479 (1990).
  • K. Ida et al., “Observation of Parallel Viscosity in a Stellarator,” Phys. Rev. Lett., 67, 58 (1991).
  • P. Gohil et al., “The Charge Exchange Recombination Diagnostic System on the D3-D Tokamak”, Proc. 14th IEEE/NPSS Symp. Fusion Technology, San Diego, California, September 30–October 3, 1991, p. 1199, IEEE (1992).
  • R.C. Isler, “An Overview of Charge-Exchange Spectroscopy as a Plasma Diagnostic,” Plasma Phys. Control. Fusion, 36, 171 (1994).
  • Y. Koide et al., “Internal Transport Barrier on q = 3 Surface and Poloidal Plasma Spin Up in JT-60U High-/3p Discharges,” Phys. Rev. Lett., 72, 3662 (1994).
  • R.E. Bell et al., “Tokamak Fusion Test Reactor Poloidal Rotation Diagnostic,” Rev. Sci. Instrum., 70, 821 (1999)(invited).
  • K.H. Burrell et al., “Role of the Radial Electric Field in the Transition from L (Low) Mode to H (High) Mode to VH (Very High) Mode in the DIII-D Tokamak,” Phys. Plasmas, 1, 1536 (1994).
  • C.D. Boley, R.K. Janev, and D.E. Post, “Enhancement of the Neutral-Beam Stopping Cross Section in Fusion Plasmas Due to Multistep Collision Processes,” Phys. Rev. Lett., 52, 534 (1984).
  • S. Suzuki et al., “Attenuation of High-Energy Neutral Hydrogen Beams in High-Density Plasmas,” Plasma Phys. Control. Fusion, 40, 2097 (1998).
  • K.H. Burrell, in Plasma Physics and Controlled Nuclear Fusion Research 1994 (IAEA, Vienna, 1995), Vol. 1, p. 221.
  • R.A. Moyer et al., “Beyond Paradigm: Turbulence, Transport, and the Origin of the Radial Electric Field in Low to High Confinement Mode Transitions in the DIII-D Tokamak,” Phys. Plasmas, 2, 2397 (1995).
  • K. Ida et al., “Edge Electric-Field Profiles of H-Mode Plasmas in the JFT-2M Tokamak,” Phys. Rev. Lett., 65, 1364 (1990).
  • K. Ida et al., “Thickness of the Layer of High Shear Radial Electric Field in JFT-2M H-Mode Plasmas,” Phys. Plasmas, 1, 116 (1994).
  • M. Yoshinuma et al., “Observations of Edge Radial Electric Field Transition in LHD Plasmas,” Plasma Phys. Control. Fusion, 46, 1021 (2004).
  • N.C. Hawkes et al., “Evolution of Edge Electric Field at the L to H Transition in JET,” Plasma Phys. Control. Fusion, 38, 1261 (1996).
  • H. Meister et al., “Measurement of Poloidal Flow, Radial Electric Field and E X B Shearing Rates at ASDEX Upgrade,” Nucl. Fusion, 41, 1633 (2001).
  • R.P. Seraydarian, K.H. Burrell, and R.J. Groebner, “A Global Fitting Code for Multichordal Neutral Beam Spectroscopic Data,” Rev. Sci. Instrum., 63, 4764 (1992).
  • K.H. Burrell, “Diagnostics for Advanced Tokamak Research,” Rev. Sci. Instrum., 72, 906 (2001)(invited).
  • K.H. Burrell et al., “Improved Charge-Coupled Device Detectors for High-Speed, Charge Exchange Spectroscopic Studies on the DIII-D Tokamak,” Rev. Sci. Instrum., 75, 2355 (2004).
  • B.C. Stratton et al., “Measurement of Iron Transport in the TFTR Tokamak by Charge Exchange Recombination Spectroscopy,” Nucl. Fusion, 31, 171 (1991).
  • V.V. Afrosimov et al., “Active Diagnostics of Impurity Ions in the Plasma of a T-4 Tokamak,” Pis’ma Zh. Eksp. Teor. Fiz., 28, 540 (1978); English translation: JETP Lett., 28, 500 (1978).
  • A.N. Zimov’Ev et al., “Radial Distribution of the Concentration of Oxygen Nuclei in the T-10 Tokamak Plasma,” Pis’ma Zh. Eksp. Teor. Fiz., 32, 557 (1980); English translation: JETP Lett., 32, 539 (1980).
  • S. Suckewer et al., “Experimental Evidence of Charge-Exchange Recombination of Highly Ionized Iron and Titanium in Princeton Large Torus,” Phys. Rev. A, 22, 725 (1980).
  • R.C. Isler et al., “Charge-Exchange Excitation and Recombination of Oxygen in the ISX-B Tokamak,” Phys. Rev. A, 24, 2701 (1981).
  • R.J. Fonck et al., “Spatially Resolved Measurements of Fully Ionized Low-Z Impurities in the PDX Tokamak,” Phys. Rev. Lett., 49, 737 (1982).
  • R.J. Fonck and R.A. Hulse, “He++ Transport in the PDX Tokamak,” Phys. Rev. Lett., 52, 530 (1984).
  • G.A. Cottrell, “Plasma Ion Temperature Measurement from Balmer Alpha Charge-Exchange Radiation During Neutral Injection,” Nucl. Fusion, 23, 1689 (1983).
  • S. Suckewer et al., “Observation of Lines Above 2000 Å in O VIII and C VI in the Princeton Large Torus Due to Charge-Exchange Processes: Diagnostic Applications,” Appl. Phys. Lett., 45, 236 (1984).
  • P.G. Carolan et al., “Charge-Exchange-Excited Line Radiation in a Tokamak (ASDEX) with Neutral-Particle-Beam Injection,” Phys. Rev. A, 35, 3454 (1987).
  • M.G. Von Hellermann et al., “First Spectroscopic Charge Exchange Measurements During Neutral Injection on JET,” Proc. 13th European Conf. Controlled Fusion and Plasma Physics, Schliersee, West Germany, 1986, Vol. 10C, Part I, p. 120, European Physical Society (1986).
  • R.B. Howell et al., “Corrections to Charge Exchange Spec-troscopic Measurements in TFTR Due to Energy-Dependent Excitation Rates,” Rev. Sci. Instrum., 59, 1521 (1988).
  • R.P. Schorn et al., “Radial Temperature Distributions of C6+ Ions in the TEXTOR Edge Plasma Measured with Lithium Beam Activated Charge Exchange Spectroscopy,” Nucl. Fusion, 32, 351 (1992).
  • A. Blom and C. Jupen, “Parametrization of the Zeeman Effect for Hydrogen-Like Spectra in High-Temperature Plasmas,” Plasma Phys. Control. Fusion, 44, 1229 (2002).
  • K. Ida, S. Kado, and Y. Liang, “Measurements of Poloidal Rotation Velocity Using Charge Exchange Spectroscopy in a Large Helical Device,” Rev. Sci. Instrum., 71, 2360 (2000).
  • J.E. Rice et al., “Observation of Charge-Transfer Population of High-n Levels in Ar+16 from Neutral Hydrogen in the Ground and Excited States in a Tokamak Plasma,” Phys. Rev. Lett., 56, 50 (1986).
  • M. Mattioli et al., “Contributions from Ion-Atom Charge-Exchange Collisions to the Cvi Lyman-Series Intensities in the Joint European Torus Tokamak,” Phys. Rev. A, 40, 3886 (1989).
  • M. Tunklev et al., “Modeling of Passive Charge Exchange Emission and Neutral Background Density Deduction in JET,” Plasma Phys. Control. Fusion, 41, 985 (1999).
  • M. Danielson et al., “On Comparison of Spectroscopically Deduced Central Ion Temperatures and Plasma Rotation at JET,” Rev. Sci. Instrum., 63, 2241 (1992).
  • M.G. Von Hellermann et al., “Complex Spectra in Fusion Plasmas,” Phys. Scripta, T120, 19 (2005).
  • Y. Koide et al., “Multichordal Charge Exchange Recombination Spectroscopy on the JT-60U Tokamak,” Rev. Sci. Instrum., 12, 119 (2001).
  • E.J. Synakowski et al., “Measurements of the Production and Transport of Helium Ash in the TFTR Tokamak,” Phys. Rev. Lett., 15, 3689 (1995).
  • D.G. Whyte et al., “Argon Density Measurements from Charge-Exchange Spectroscopy,” Phys. Plasmas, 5, 3694 (1998).
  • U. Gerstel et al., “Quantitative Simulation of Non-Thermal Charge-Exchange Spectra During Helium Neutral Beam Injection,” Plasma Phys. Control. Fusion, 39, 737 (1997).
  • R.E. Bell, “Charge Exchange with Neutral Beams on National Spherical Torus Experiment,” Rev. Sci. Instrum., 11, 10E902 (2006).
  • R.C. Isler and E.C. Crume, “Charge-Transfer Excitation of Impurity Ions in Tokamaks,” Phys. Rev. Lett., 41, 1296 (1978).
  • M. Von Hellermann et al., “Analytical Approximation of Cross-Section Effects on Charge Exchange Spectra Observed in Hot Fusion Plasmas,” Plasma Phys. Control. Fusion, 31, 71 (1995).
  • H.P. Summers et al., “Spectral Analysis of Highly Ionised Fusion Plasmas Using Beams,” Phys. Scripta, T92, 80 (2001); available on the Internet at http://adas.phys.strath.ac.uk/.
  • R.C. Isler and R.E. Olsen, “Contribution of Excited Hydrogen Atoms to Charge-Exchange Excitation of Impurities in Fusion Plasmas,” Phys. Rev. A, 31, 3399 (1988).
  • R. Hoekstra et al., “Charge Exchange from D(n=2) Atoms to Low-Z Receiver Ions,” Plasma Phys. Control. Fusion, 40, 1541 (1998).
  • M.C. Zarnstorff, Princeton Plasma Physics Laboratory, Personal Communication (Dec. 1999).
  • R.E. Bell and E.J. Synakowski, “New Understanding of Poloidal Rotation Measurements in a Tokamak Plasma,” AIP Conf. Proc., 541, 39 (2000).
  • W. Solomon et al., “Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements,” Rev. Sci. Instrum., 15, 3481 (2004).
  • D.D. Ryutov, “Simple Theory of the Line Emission Profile for the Charge-Exchange Recombination Spectroscopy Method,” Phys. Plasmas, 1, 1315 (2000).
  • M.C. Zarnstorff et al., “Heating and Transport in TFTR D-T Plasmas,” Plasma Phys. Control. Nucl. Fusion Res., 1, 183 (1994).
  • W. Solomon et al., “Experimental Test of the Neoclassical Theory of Impurity Poloidal Rotation in Tokamaks,” Phys. Plasmas, 13, 056116 (2006).
  • J.T. Hogan, “Calculation of Hydrogen Density in Toroidal Plasma,” J. Nucl. Mater., 111112, 413 (1982).
  • B.C. Stratton et al., “Charge Exchange Recombination Spec-troscopy Measurement in the Extreme Ultraviolet Region of Central Carbon Concentrations During High Power Neutral Beam Heating in TFTR,” Nucl. Fusion, 30, 675 (1990).
  • E. Busche, H. Euringer, and R. Jaspers, “Measurement of Deuterium Ion Temperature Profiles at TEXTOR-94,” Plasma Phys. Control. Fusion, 39, 1327 (1997).
  • K.-D. Zastrow et al., “Double Charge Exchange from Helium Neutral Beams in a Tokamak Plasma,” Plasma Phys. Control. Fusion, 45, 1747 (2003).
  • A. Boileau et al., “Observations of Motional Stark Features in the Balmer Spectrum of Deuterium in the JET Plasma,” J. Phys. B: At. Mol. Opt., 22, L145 (1989).
  • R.C. Wolf et al., “Motional Stark Effect Measurements of the Local ICRH Induced Diamagnetism in JET Plasmas,” Nucl. Fusion, 33, 1835 (1993).
  • M.G. Von Hellermann et al., “Pilot Experiments for the International Thermonuclear Experimental Reactor Active Beam Spectroscopy Diagnostic,” Rev. Sci. Instrum., 15, 3458 (2004).
  • K. Jakubowska et al., “Motional Stark Effect Diagnostic on TEXTOR,” Rev. Sci. Instrum., 15, 3475 (2004).
  • R.J. Groebner et al., “Experimentally Inferred Ion Thermal Diffusivity Profiles in the Doublet III Tokamak: Comparison with Neoclassical Theory,” Nucl. Fusion, 26, 5, 543 (1986).
  • R.J. Groebner et al., “Plasma Rotation and Electric Field Effects in H-Mode in DIII-D”, Proc. 16th European Conf. Controlled Fusion and Plasma Physics, Venice, 1989, Vol. 13B, p. 245, European Physical Society (1989).
  • S.-I. Itoh and K. Itoh, “Model of L to H-Mode Transition in Tokamak,” Phys. Rev. Lett., 60, 2276 (1988).
  • K.C. Shaing and E.C. Crume, Jr., “Bifurcation Theory of Poloidal Rotation in Tokamaks: A Model for L-H Transition,” Phys. Rev. Lett., 63, 2369 (1989).
  • H. Biglari, P.H. Diamond, and P.W. Terry, “Influence of Sheared Poloidal Rotation on Edge Turbulence,” Phys. Fluids, B2, 1 (1990).
  • K.H. Burrell, “Effects of E X B Velocity Shear and Magnetic Shear on Turbulence and Transport in Magnetic Confinement Devices,” Phys. Plasmas, 4, 1499 (1997).
  • K.H. Burrell, “Tests of Causality: Experimental Evidence that Sheared E X B Flow Alters Turbulence and Transport in Tokamaks,” Phys. Plasmas, 6, 4418 (1999).
  • P.W. Terry, “Suppression of Turbulence and Transport by Sheared Flow,” Rev. Mod. Phys., 12, 109 (2000).
  • R.E. Bell et al., “Poloidal Rotation in TFTR Reversed Shear Plasmas,” Phys. Rev. Lett., 81, 1429 (1998).
  • K.H. Burrell et al., “Quiescent Double Barrier High-Confinement Mode Plasmas in the DIII-D Tokamak,” Phys. Plasmas, 8, 2153 (2001).
  • T.H. Osborne et al., “Recent VH-Mode Results on DIII-D,” Plasma Phys. Control. Fusion, 36, A237 (1994).
  • T.H. Osborne et al., “Confinement and Stability of VH Mode Discharges in the DIII-D Tokamak,” Nucl. Fusion, 35, 23 (1995).
  • K.H. Burrell et al., “The Role of Electric Field Shear Stabilization of Turbulence in the H-Mode to VH-Mode Transition in DIII-D”, Proc. 20th European Conf. Controlled Fusion and Plasma Physics, Vol. 17C, p. 27, European Physical Society (1993).
  • M.R. Wade et al., “Helium Exhaust Studies in H-Mode Discharges in the DIII-D Tokamak Using an Argon-Frosted Divertor Cryo-pump,” Phys. Rev. Lett., 14, 2702 (1995).
  • M.R. Wade et al., “Helium Transport and Exhaust Studies in Enhanced Confinement Regimes in DIII-D,” Phys. Plasmas, 6, 2357 (1995).
  • M.R. Wade et al., “ELM-Induced Transport of Impurity Density, Energy, and Momentum,” Phys. Rev. Lett., 94, 225001 (2005).
  • M.R. Wade et al., “Edge Impurity Dynamics During an ELM Cycle on DIII-D,” Phys. Plasmas, 12, 056120 (2005).
  • E.A. Lazarus et al., “A Comparison of Sawtooth Oscillations in Bean and Oval Shaped Plasmas,” Plasma Phys. Control. Fusion, 48, 8, L65 (2006).
  • E.A. Lazarus et al., “Sawtooth Oscillations in Shaped Plasmas,” Phys. Plasmas, 14, 055701 (2007).
  • R.E. Bell, “Exploiting a Transmission Grating Spectrometer,” Rev. Sci. Instrum., 75, 4158 (2004).
  • K. Ida et al., “Measurements of Rotational Transform due to Non-Inductive Toroidal Current Using Motional Stark Effect Spec-troscopy in the Large Helical Device,” Rev. Sci. Instrum., 76, 053505 (2005).
  • D.L. Hillis et al., “A High Throughput Spectrometer System for Helium Ash Detection on JET,” Rev. Sci. Instrum., 75, 3449 (2004).
  • D.M. Thomas et al., “A Fast Charge Coupled Device Detector for Charge Exchange Recombination Spectroscopy on the DIII-D To-kamak,” Rev. Sci. Instrum., 68, 1233 (1997).
  • K.H. Burrell et al., “Improved Charge Coupled Device Detectors for the Edge Charge Exchange Spectroscopy System on the DIII-D Tokamak,” Rev. Sci. Instrum., 72, 1028 (2001). ’
  • F.M. Levinton et al., “Magnetic Field Pitch-Angle Measurements in the PBX-M Tokamak Using the Motional Stark Effect,” Phys. Rev. Lett., 63, 2060 (1989).
  • F.M. Levinton et al., “q-Profile Measurements in the Tokamak Fusion Test Reactor,” Phys. Fluids B, 5, 2554 (1993).
  • F.M. Levinton et al., “Stabilization and Onset of Sawteeth in TFTR,” Phys. Rev. Lett., 72, 2895 (1994).
  • R. Nazikian et al., “Alpha-Particle-Driven Toroidal Alfvén Eigenmodes in the Tokamak Fusion Test Reactor,” Phys. Rev. Lett., 78, 2976 (1997).
  • Z. Chang et al., “Off-Axis Sawteeth and Double-Tearing Re-connection in Reversed Magnetic Shear Plasmas in TFTR,” Phys. Rev. Lett., 77, 3553 (1996).
  • M.H. Redi et al., “Calculations of Alpha Particle Loss for Reversed Magnetic Shear in the Tokamak Fusion Test Reactor,” Phys. Plasmas, 4, 4001 (1997).
  • F.M. Levinton et al., “Improved Confinement with Reversed Magnetic Shear in TFTR,” Phys. Rev. Lett., 75, 4417 (1995).
  • E.J. Strait et al., “Enhanced Confinement and Stability in DIII-D Discharges with Reversed Magnetic Shear,” Phys. Rev. Lett., 75, 4421 (1995).
  • E.J. Synakowski et al., “Roles of Electric Field Shear and Shafranov Shift in Sustaining High Confinement in Enhanced Reversed Shear Plasmas on the TFTR Tokamak,” Phys. Rev. Lett., 78, 2972 (1997).
  • E.U. Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge (1963).
  • F.M. Levinton, “The Multichannel Motional Stark Effect Diagnostic on TFTR,” Rev. Sci. Instrum., 63, 5157 (1992).
  • F.M. Levinton et al., “Magnetic Field Pitch Angle Diagnostic Using the Motional Stark Effect,” Rev. Sci. Instrum., 61, 2914 (1990) (invited).
  • S.P. Hirshman et al., “Equilibrium Reconstruction of the Safety Factor Profile in Tokamaks from Motional Stark Effect Data,” Phys. Plasmas, 1, 2277 (1994).
  • L.L. Lao et al., “Equilibrium Analysis of Current Profiles in Tokamaks,” Nucl. Fusion, 30, 1035 (1990).
  • F.M. Levinton, “The Motional Stark Effect Diagnostic on TFTR,” in 10th Topl. Conf. Atomic Processes in Plasmas, AIP Conf. Proc. 381, p. 143, A. Osterheld and W. Goldstein, Eds., Amer-ican Institute of Physics, New York (1996).
  • B. Lyot, “The Birefringent Filter and Its Applications in Solar Physics,” Ann. Astrophys., 7, 31 (1944).
  • A.M. Title, “Improvement of Birefringent Filters. 2: Achromatic Waveplates,” Sol. Phys., 33, 521 (1973); see also Appl. Opt., 14, 229 (1975); Appl. Opt., 14, 445 (1975), and Appl. Opt., 15, 2879 (1975).
  • D.R. Ernst et al., “Notched Velocity Profiles and the Radial Electric Field in High Ion Temperature Plasmas in the Tokamak Fusion Test Reactor,” Phys. Plasmas, 5, 665 (1998).
  • M.C. Zarnstorff et al., “The Effect of Er on Motional-Stark Effect Measurements of q, A New Technique for Measuring Er, and a Test of the Neoclassical Er,” Phys. Plasmas, 4, 1097 (1997).
  • B.W. Rice, K.H. Burrell, and L.L. Lao, “Effect of Plasma Radial Electric Field on Motional Stark Effect Measurements and Equilibrium Reconstruction,” Nucl. Fusion, 37, 517 (1997).
  • C.T. Holcomb et al., “Motional Stark Effect Diagnostic Expansion on DIII-D for Enhanced Current and Er Profile Measurements,” Rev. Sci. Instrum., 77, 10E506 (2006).
  • D. Wroblewski et al., “Motional Stark Effect Polarimetry for a Current Profile Diagnostic on DIII-D,” Rev. Sci. Instrum., 61, 3552 (1990).
  • T. Fujita et al., “Current Profile Measurements with Motional Stark Effect Polarimeter in JT-60U Tokamak,” Fusion Eng. Des., 3435, 289 (1997).
  • B.C. Stratton et al., “Instrumentation for the Joint European Torus Motional Stark Effect Diagnostic,” Rev. Sci. Instrum., 70, 898 (1999).
  • T. Soetens, R. Jaspers, and E. Desoppere, “The Motional Stark Effect Diagnostic on TEXTOR-94: First Measurements,” Rev. Sci. Instrum., 70, 890 (1999).
  • N. Bretz et al., “A Motional Stark Effect Instrument to Measure q(R) on the C-Mod Tokamak,” Rev. Sci. Instrum., 72, 1012 (2001).
  • K. Ida et al., “Measurements of Rotational Transform due to Noninductive Toroidal Current Using Motional Stark Effect Spectroscopy in the Large Helical Device,” Rev. Sci. Instrum., 76, 053505 (2005).
  • J. Howard, “Optical Coherence-Based Techniques for Motional Stark Effect Measurements of Magnetic Field Pitch Angle,” Plasma Phys. Control. Fusion, 41, 271 (1999).
  • S.H. Batha et al., “Equilibrium Reconstructions of Reversed-Shear Discharges Based on Motional Stark Effect Measurements,” Rev. Sci. Instrum., 68, 392 (1997).
  • D. Wroblewski and R.T. Snider, “Evidence of the Complete Magnetic Reconnection During a Sawtooth Collapse in a Tokamak,” Phys. Rev. Lett., 71, 859 (1993).
  • R.C. Wolfe et al., “Comparison of Poloidal Field Measurements on JET,” Nucl. Fusion, 33, 663 (1993).
  • H. Soltwisch, “Measurement of Current-Density Changes During Sawtooth Activity in a Tokamak by Far-Infrared Polarimetry,” Rev. Sci. Instrum., 59, 1599 (1986).
  • L. Zakharov and B. Rogers, “Two-Fluid Magnetohydro-dynamic Description of the Internal Kink Mode in Tokamaks,” Phys. Fluids B, 4, 3285 (1992).
  • L. Zakharov, B. Rogers, and S. Migliuolo, “TheTheory of the Early Nonlinear Stage of m = 1 Reconnection in Tokamaks,” Phys. Fluids B, 5, 2498 (1993).
  • E.L. Foley and F.M. Levinton, “Development of the Motional Stark Effect with Laser-Induced Fluorescence Diagnostic,” Rev. Sci Instrum, 15, 3462 (2004).
  • F.M. Levinton et al., “Radial Electric Field Measurements in Reversed Shear Plasmas,” Phys. Rev. Lett., 80, 4887 (1998).
  • R.J. Jayakumar et al., “Observation of Magnetohydro-dynamic Instability and Direct Measurement of Local Perturbed Magnetic Field Using Motional Stark Effect Diagnostic,” Rev. Sci. Instrum., 15, 2995 (2004).
  • F.M. Levinton and A. Fredriksen, “Diagnostic Method for the Measurement of Coherent Magnetic Field Fluctuations,” Rev. Sci. Instrum., 15, 4162 (2004).
  • H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Plenum Publishing (1977).
  • K. Mccormick, M. Kick, and J. Olivain, “Measurement of the Poloidal Field in the PULSATOR Tokamak Using a Neutral Li Beam in Connection with the Zeeman Effect,” Proc. 8th Euro. Conf. Control. Fusion Plasma Phys., Prague, p. 140 (1977).
  • K. Kadota et al., “Plasma Diagnostics by Neutral Beam Probing,” Phys. Plasmas, 20, 1011 (1978).
  • K. Kadota et al., “Space-Resolved Measurement of Electron Density by Neutral Li Beam Probing in NBT,” Jpn. J. Appl. Phys., 21, 5, L260 (1982).
  • D.M. Thomas, W.P. West, and K. Mccormick, “Low-Divergence, High Brightness Lithium Ion Source for Plasma Diagnostics,” Rev. Sci. Instrum., 59, 8, 1735 (1988).
  • D.M. Thomas, “Development of Lithium Beam Spectroscopy as an Edge Fluctuation Diagnostic for DIII-D,” Rev. Sci. Instrum., 66, 1, 806 (1995)(invited).
  • H.L. Bay, E. Dullni, and P. Leismann, “Characteristics of a High Current Ion Source Operated with Lithium,” Jul-2062, KFA (1986).
  • R.P. Schorn et al., “Absolute Concentrations for Light Impurity Ions in Tokamak Discharges Measured with Lithium-Beam-Activated Charge Exchange Spectroscopy,” Appl. Phys. B, 52, 71 (1991).
  • I. Langmuir and K.B. Blodgett, “Currents Limited by Space Charge Between Concentric Spheres,” Phys. Rev., 24, 49 (1924).
  • J.R. Pierce, Theory and Design of Electron Beams, Van Nostrand, New York (1954).
  • G.R. Brewer, Focusing of Charged Particles, Vol. II, pp. 2372, A. Septier, Ed., Academic Press, New York (1967).
  • J.E. Boers, “SNOW,” SAND79-1027, Sandia National Laboratories (1982).
  • D.A. Dahl, INEEL-95/0403, “SIMION 3D,” Idaho National Engineering and Environmental Laboratory (2000).
  • K. Mccormick and M. Kick, “The ASDEX 100 keV Neutral Lithium Beam Diagnostic Gun,” IPP III/85, Max-Planck-Institut fur Plasmaphysik (Apr. 1983).
  • M. Bacal and W. Reichelt, “Metal Vapor Confinement in Vacuum,” Rev. Sci. Instrum., 45, 769 (1974).
  • H. Iguchi et al., “Space and Time-Resolved Measurements of Plasma Density by a Lithium Neutral Beam Probe in NBT-1M,” Rev. Sci. Instrum., 56, 5, 1050 (1985).
  • K. Nakamura et al., “Two-Dimensional Diagnostics of Edge and Divertor Region of Toroidal Helical Plasmas Using a Lithium Beam Probe,” J. Nucl. Mater., 313, 725 (2003).
  • K. Nakamura et al., “Two Dimensional Diagnostic of Edge Plasma Structure Using a Lithium Beam Probe in a Compact Helical System”, Rev. Sci. Instrum., 16, 013504-1 (2005).
  • E. Wolfrum et al., “Fast Lithium-Beam Spectroscopy of Tokamak Edge Plasmas,” Rev. Sci. Instrum., 64, 8, 2285 (1993).
  • S. Fiedler et al., “Impurity Investigations by Means of Li-Beam Induced Charge Exchange Spectroscopy on W7-AS”, J. Plasma Fusion Res., Series 1, 287 (1998).
  • H. Ehmler et al., “Carbon Concentration in the Wendelstein 7-AS Stellarator Measured with the High-Energy Li Beam,” Plasma Phys. Control. Fusion, 44, 1411 (2002).
  • H. Ehmler et al., “Charge-Exchange Spectroscopy at the W7-AS Stellarator Employing a High-Energy Li Beam,” Plasma Phys. Control. Fusion, 45, 1, 53 (2003).
  • R. Brandenburg et al., “Fast Lithium Beam Edge Plasma Spectroscopy at IPP Garching-Status and Recent Developments,” Fusion Technol., 36, 289 (1999).
  • S. Fiedler et al., “Edge Plasma Diagnostics on W7-AS and ASDEX Upgrade Using Fast Li Beams,” J. Nucl. Mater., 266269, 1279 (1999).
  • M. Reich et al., “Lithium Beam Charge Exchange Diagnostic for Ion Temperature Measurements at the ASDEX Upgrade Toka-mak,” Plasma Phys. Control. Fusion, 46, 797 (2004).
  • J. Fujita and K. Mccormick, “Measurement of the Magnetic Field Direction in a Tokamak Plasma Using the Polarization of an Impurity Line,” Proc. 6th Euro. Conf. Control. Fusion Plasma Phys., Moscow, Russia, 1973, p. 191, Joint Institute for Nuclear Research (1973).
  • K. Mccormick et al., “Temporal Behavior of the Plasma Current Distribution in the ASDEX Tokamak During Lower-Hybrid Current,” Phys. Rev. Lett., 58, 5, 491 (1987).
  • M. Ueda et al., “Measurement of the Edge Plasma Density in CHS by Fast Neutral Lithium Beam Probing,” J. Nucl. Mater., 196198, 923 (1992).
  • W.P. West et al., “Diagnostic Instrument for the Measurement of Poloidal Magnetic Fields in Tokamaks,” Rev. Sci. Instrum., 51, 8, 1552 (1986).
  • W.P. West and D.M. Thomas, “CW Dye Laser System for Li-Beam Spectroscopy in a Tokamak,” Rev. Sci. Instrum., 51, 8, 1843 (1986).
  • W.P. West, “Plasma Density and Poloidal Field Measurements on TEXT Using an Injected Lithium Beam,” Rev. Sci. Instrum., 51, 8, 2006 (1986)(invited).
  • W.P. West et al., “Measurement of the Rotational Transform at the Axis ofa Tokamak,” Phys. Rev. Lett., 58, 26, 2758 (1987).
  • W.P. West, D.M. Thomas, and M.P. Thomas, “Poloidal Field Measurements Using Laser-Enhanced Attenuation of an Energetic Lithium Beam,” Rev. Sci. Instrum., 59, 8, 1617 (1988).
  • C. Honda et al., “Transient Local Magnetic Field Measurement in a Bumpy Torus by Rapid-Frequency-Scan Laser Spectros-copy,” Rev. Sci. Instrum., 58, 9, 1593 (1987).
  • D.M. Thomas et al., “Utilization of LIBEAM Polarimetry for Edge Current Determination on DIII-D,” in Advanced Diagnostics for Magnetic andInertialFusion, p. 319, P.E. Stott et al., Eds., Kluwer Academic/Plenum Publishers, New York (2002).
  • D.M. Thomas, “Poloidal Magnetic Field Measurements and Analysis with the DIII-D LIBEAM System,” Rev. Sci. Instrum., 74, 3, 1541 (2003)(invited).
  • T.N. Carlstrom, D.M. Thomas, and G. Brewis, “Optical Design for Li Beam Zeeman Polarimetry Measurements on DIII-D,” Rev. Sci. Instrum., 74, 3, 1601 (2003).
  • J.C. Kemp, “Piezo-Optical Birefringence Modulators: New Use for a Long-Known Effect,” J. Opt. Soc. Am., 59, 950 (1970).
  • D.M. Thomas and A.W. Leonard, “Signal Processing Techniques for Lithium Beam Polarimetry on DIII-D,” Rev. Sci. Instrum., 77, 10F515-1:4 (2006).
  • A. Korotkov et al., “Line Ratio Method for Poloidal Magnetic Field Measurements Using Li-Multiplet (22S-22P) Emission,” in Advanced Diagnostics for Magnetic and Inertial Fusion, p. 209, P.E. Stott et al., Eds., Kluwer Academic/Plenum Publishers, New York (2002).
  • A.A. Korotkov et al., “Line Ratio Method for Measurement of Magnetic Field Vector Using Li-Multiplet (22S-22P) Emission,” Rev. Sci. Instrum., 75, 2590 (2004).
  • K. Mccormick et al., “Temporal Behavior of the Electron Density Profile in the Scrape-off Layer of Neutral-Beam-Heated ASDEX Plasmas,” J. Nucl. Mater., 121, 48 (1984).
  • J. Schweinzer et al., “Reconstruction of Plasma Edge Density Profiles from Li(2s-2p) Emission Profiles,” Plasma Phys. Control. Fusion, 34, 7, 1173 (1992).
  • S. Sasaki et al., “Edge Plasma Density Reconstruction for Fast Monoenergetic Lithium Beam Probing,” Rev. Sci. Instrum., 64, 7, 1699 (1993).
  • Z.A. Pietrzyk, P. Breger, and D.D. R. Summers, “De-convolution of Electron Density from Lithium Beam Emission Profiles in High Edge Density Plasmas,” Plasma Phys. Control. Fusion, 35, 1725 (1993).
  • K. Mccormick et al., “Edge Density Measurements with a Fast Li-Beam Probe in Tokamak and Stellerator Experiments,” Fusion Eng. Des., 3435, 125 (1997).
  • P. Breger et al., “Plasma-Edge Gradients in L-Mode and ELM-Free H-Mode JET Plasmas,” Plasma Phys. Control. Fusion, 40, 347 (1998).
  • T. Morisaki et al., “Lithium Beam Probe for Edge Density Profile Measurements on the Large Helical Device,” Rev. Sci. In-strum., 74, 3, 1865 (2003).
  • A. Komori et al., “Neutral Beam Probe Spectroscopy for the Measurement of Local Plasma Density Fluctuations,” Rev. Sci. Instrum., 57, 2, 151 (1986).
  • A. Pospieszczyk and G.G. Ross, “Density Determination in the TEXTOR Boundary Layer by Laser-Ablated Fast Lithium Atoms,” Rev. Sci. Instrum., 59, 4, 605 (1988).
  • A. Pospieszczyk and G.G. Ross, “Use of Laser-Ablated Fast Particle Beams for the Measurement of Ne and Te Profiles in the TEXTOR Boundary Layer,” Rev. Sci. Instrum., 59, 8, 1491 (1988).
  • A. Komori et al., “Observation of Low Frequency Density Fluctuations in a Tokamak Edge Plasma,” Nucl. Fusion, 28, 8, 1460 (1988).
  • A. Komori et al., “Numerical Study of Neutral Beam Probe Spectroscopy for Edge Fluctuation Measurements,” Rev. Sci. Instrum., 61, 12, 3787 (1990).
  • T. Morisaki et al., “Edge Plasma Behavior During Auxiliary Heating in the Compact Helical System (CHS),” Plasma Phys. Control. Fusion, 37, 787 (1995).
  • D.M. Thomas, A.W. Hyatt, and M.P. Thomas, “Edge Density Fluctuation Diagnostic for DIII-D Using Lithium Beams,” Rev. Sci. Instrum., 61, 10, 3040 (1990).
  • D.M. Thomas, “Visualization of Density Structures in Tokamak Edge Plasmas Using Lithium Beam Fluorescence,” IEEE Trans. Plasma Sci., 24, 1, 27 (1996).
  • S. Zoletnik et al., “Determination of Electron Density Fluctuation Correlation Functions Via Beam Emission Spectroscopy,” Plasma Phys. Control. Fusion, 40, 1399 (1998).
  • S. Zoletnik et al., “Density Fluctuation Phenomena in the Scrape-Off Layer and Edge Plasma of the Wendelstein 7-AS Stellarator,” Phys. Plasmas, 6, 11, 4239 (1999).
  • M. Bruchhausen et al., “Fluctuation Measurements on the Wendelstein 7-AS Stellerator by Means of Repetitive Lithium Laser Blow-Off,” Plasma Phys. Control. Fusion, 46, 489 (2004).
  • A. Huber et al., “Thermal Li Beam Fluctuation Measurements,” Plasma Phys. Control. Fusion, 47, 409 (2005).
  • F. Aumayr, M. Fehringer, and H.P. Winter, “Inelastic H + -Li(2s) Collisions (2-20keV)—I. Experimental Methods andLi(2p) Excitation,” J. Phys. B: At. Mol. Opt. Phys., 17, 4185 (1984).
  • F. Aumayr and H.P. Winter, “Excitation by Impact of He + (2-20 keV) on Li(2s),” J. Phys. B: At. Mol. Opt. Phys., 18, L741 (1985).
  • F. Aumayr and H.P. Winter, “Total Single-Electron-Capture Cross Sections for Impact of H+, H+, He+, and Ne+ (2-20 keV) on Li,” Phys. Rev. A, 31, 1, 67 (1985).
  • E. Hintz and B. Schweer, “Plasma Edge Diagnostics by Atomic Beam Supported Emission Spectroscopy—Status and Perspectives,” Plasma Phys. Control. Fusion, 37, A87 (1995).
  • R. Brandenberg et al., “Impurity Ions in ASDEX Upgrade and Wendelstein 7-AS Studied by Lithium Beam Charge-Exchange Spectroscopy”, Proc. 1998ICPP and 25th EPS Conf. Controlled Fusion and Plasma Physics, Prague, Czech Republic, June 29–July 3, 1998, ECA 22C, p. 1518, European Physical Society (1998).
  • K. Mccormick and J. Olivain, “Measurement of the Radial Current Distribution in a Tokamak Plasma with the Aid of a Neutral Lithium Beam,” Rev. Phys. Appl., 13, 85 (1978).
  • K. Mccormick et al., “Measurement of the Current Distribution in ASDEX During Lower Hybrid Current Drive Using the Li-Beam/Zeeman Effect Technique,” Proc. 12th European Conf. Controlled Fusion and Plasma Heating, Budapest, Hungary, September 2–6, 1985, Vol. 1, p. 199, European Physical Society (1985).
  • K. Mccormick et al., “Influence of the Lower Hybrid Wave Spectrum on the Current Distribution in ASDEX,” Proc. 13th European Conf. Controlled Fusion and Plasma Heating, Schliersee, Germany, Vol. 2, p. 323, European Physical Society (1986).
  • K. Kadota et al., “Space-Resolved Measurement of Internal Magnetic Field in a Bumpy Torus by Li0-Beam Probe Spectroscopy,” Rev. Sci. Instrum., 56, 5, 857 (1985).
  • D.M. Thomas et al., “Prospects for Edge Current Density Determination Using LIBEAM on DIII-D,” Rev. Sci. Instrum., 72, 1, 1023 (2001).
  • D.M. Thomas, “Lithium Polarization Spectroscopy: Making Precision Plasma Current Measurements in the DIII-D National Fusion Facility,” Proc. 15th Int. Conf. Atomic Processes in Plasmas, Gaithersburg, Maryland, March 19–22, 2007, Conference Proceedings, Vol. 926, American Institute of Physics (2007).
  • D.M. Thomas, A.W. Leonard, and H.W. Mueller, “Calculation of Edge Toroidal Current Density Distributions from DIII-D Lithium Beam Measurements Using Ampere’s Law,” Rev. Sci. Instrum., 15, 10, 4109 (2004).
  • D.M. Thomas et al., “Measurement of Pressure-Gradient-Driven Currents in Tokamak Edge Plasmas”, Phys. Rev. Lett., 93, 6, 0650031-4 (2004).
  • D.M. Thomas et al., “Measurement of Edge Currents in DIII-D and Their Implication for Pedestal Stability”, Phys. Plasmas, 12, 0561231:056123-9 (2005).
  • D.M. Thomas et al., “The Effect of Plasma Collisionality on Pedestal Current Density Formation in DIII-D,” Plasma Phys. Control. Fusion, 48, A183 (2006).
  • D.M. Thomas et al., “Edge Current Growth and Saturation During the Type 1 ELM Cycle”, Proc. 33rd EPS Conf. Controlled Fusion and Plasma Physics, Rome, Italy, 2006, ECA Vol. 301, P5-139, European Physical Society (2006).
  • R.M. Oliviera et al., “Fast Neutral Lithium Beam Probing of the Edge Region of the Spherical Tokamak ETE,” Rev. Sci. Instrum., 15, 10, 3471 (2004).
  • T. Fujita, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Personal Communication (2008).
  • A.G. Szabo, “Application of Laser-Based Fluorescence to Study Protein Structure and Dynamics,” Biotechnol., 14, 159 (1990).
  • N.S. Nishioka, “Laser-Induced Fluorescence Spectroscopy,” Gastrointest. Endosc. Clin. N. Am., 4, 313 (1994).
  • B. Hiller and R.K. Hanson, “Simultaneous Planar Measurements of Velocity and Pressure Fields in Gas Flows Using Laser-Induced Fluorescence,” Appl. Opt., 21, 33 (1988).
  • D.R. Bates, A.E. Kingston, and R.W. P. Mcwhirter, “Recombination Between Electrons and Atomic Ions—I: Optically Thin Plasmas,” Proc. R. Soc. A, 261, 19 (1962).
  • D.D. Burgess et al., “A Comparison Between Theory and Laser Spectroscopic Measurements for a Hydrogen Plasma Under High-Intensity Resonant Balmer Line Irradiation,” J. Phys. B, 13, 1675 (1980).
  • H.P. Summers et al., “Ionization State, Excited Populations and Emission of Impurities in Dynamic Finite Density Plasmas—I: The Generalized Collisional-Radiative Model for Light Elements,” Plasma Phys. Control. Fusion, 48, 263 (2006).
  • E.L. Foley and F.M. Levinton, “A Collisional-Radiative Model Including Sublevel Parameters (CRISP) for H-Alpha Radiation,” J. Phys. B: At. Mol. Opt. Phys., 39, 443 (2006)
  • V.I. Gladushchak et al., “Development and Application of a Photoionization Method for Measuring the Density of Hydrogen Atoms in a Tokamak Plasma,” Sov. Tech. Phys. Lett., 19, 362 (1993).
  • V.I. Gladushchak et al., “Measurement of Neutral Density Profile in a Tokamak Plasma Using the Principle of Laser Induced Ionization,” Nucl. Fusion, 35, 1385 (1995).
  • R.A. Stern and J.A. Johnson, “Plasma Ion Diagnostics Using Resonant Fluorescence,” Phys. Rev. Lett., 34, 1548 (1975).
  • E. Scime et al., “Laser-Induced Fluorescence in a Pulsed Argon Plasma,” Rev. Sci. Instrum., 16, 026107 (2005).
  • P. Mertens and S. Brezinsek, “Recycling of Hydrogen Isotopes—from an Identification of Mechanisms in TEXTOR to a Wider Formulation,” Fusion Sci. Technol., 41, 209 (2005).
  • J. Jolly and J.-P. Booth, “Atomic Hydrogen Densities in Capacitively Coupled Very High-Frequency Plasmas in H2: Effect of Excitation Frequency,” J. Appl. Phys., 91, 103305 (2005).
  • X. Sun et al., “Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic Field Gradient,” Phys. Rev. Lett., 93, 235002 (2004).
  • F. Skiff and J. Bollinger, “Mini-Conference on Laser-Induced Fluorescence in Plasmas,” Phys. Plasmas, 11, 2972 (2004).
  • A. Kuritsyn and M. Levinton, “Development of the Megahertz Planar Laser-Induced Fluorescence Diagnostic for Plasma Turbulence Visualization,” Rev. Sci. Instrum., 15, 4115 (2004).
  • E.L. Foley and F.M. Levinton, “Progress on the Motional Stark Effect with Laser-Induced Fluorescence Diagnostic,” Rev. Sci. Instrum., 11, 10F311 (2006)(invited).
  • R. Mcwilliams and D. Edrich, “Laser-Induced Fluorescence Diagnosis of Plasma Processing Sources,” Thin Solid Films, 435, 1 (2003).
  • G.D. Severn et al., “Experimental Studies of the Bohm Criterion in a Two-Ion-Species Plasma Using Laser-Induced Fluorescence,” Phys. Rev. Lett., 90, 145001 (2003).
  • K. Yoshikawa et al., “Potential Profile Measurements by Laser-Induced Fluorescence Method in a Helium Discharge Plasma,” Proc. 19th IEEE/IPSS Symp. Fusion Eng., 438 (2002).
  • D.N. Hill, S. Fornaca, and M.G. Wickham, “Single Frequency Scanning Laser as a Plasma Diagnostic,” Rev. Sci. Instrum., 54, 309 (1983).
  • R.F. Boivin and E.E. Scime, “Laser Induced Fluorescence in Ar and He Plasmas with a Tunable Diode Laser,” Rev. Sci. Instrum., 14, 4352 (2003).
  • Y. Cui et al., “All-Solid-State Optical Parametric Oscillator for the Visible,” Opt. Lett., 11, 646 (1992).
  • J. Hackmann et al., “Investigation of Neutral Hydrogen Transport by Means of H Alpha Resonance Fluorescence Measurements at the Tokamak UNITOR,” J. Nucl. Mater., 111112, 221 (1982).
  • T. Kajiwara et al., “Application of Two-Photon-Excited Laser-Induced Fluorescence to Atomic Hydrogen Measurements in the Edge Region of High-Temperature Plasmas,” Rev. Sci. Instrum., 62, 2345 (1991).
  • P. Mertens and M. Silz, “Radial Profiles of Atomic Deuterium Measured in the Boundary of TEXTOR 94 with Laser-Induced Fluorescence,” J. Nucl. Mater., 241243, 842 (1997).
  • P. Mertens and P. Bogen, “Radial Profiles of Atomic Deuterium Measured in the Boundary of TEXTOR 94 with Laser-Induced Fluorescence,” Appl. Phys. A, 43, 197 (1987).
  • Grutzmacher et al., “Quantitative Measurements of Two-Photon Induced L Alpha Fluorescence: A Proof for Tokamak Edge Diagnostics,” Diagnostics for Experimental Thermonuclear Fusion Reactors 2, pp. 385–388 Plenum Press, New York (1998).
  • S. Brezinsek et al., “Plasma Edge Diagnostics for Textor,” Fusion Sci. Technol., 41, 209 (2005).
  • F.M. Levinton and F. Trintchouk, “Visualization of Plasma Turbulence with Laser-Induced Fluorescence,” Rev. Sci. In-strum., 12, 898 (2001)(invited).
  • K. Takiyama et al., “Spectroscopic Method to Directly Measure Electric Field Distribution in Tokamak Plasma Edge,” Rev. Sci. Instrum., 68, 1028 (1997).
  • M. Watanabe, K. Takiyama, and T. Oda, “Polarized Laser-Induced Fluorescence Spectroscopy for Measuring Electric Field Distribution in Plasmas,” Rev. Sci. Instrum., 70, 903 (1999).
  • M. Wickham et al., “Barium Ion Beam Probe for Magnetic Field, Diamagnetism, and Space Potential Measurement in Plasmas,” Rev. Sci. Instrum., 55, 1748 (1984).
  • R. Mcwilliams et al., “Cross-Field Ion Transport and Heating Due to Parametric Decay of Power Hybrid Waves,” Phys. Rev. Lett., 50, 836 (1983).
  • R. Koslover and R. Mcwilliams, “Measurement of Multidimensional Ion Velocity Distributions by Optical Tomography,” Rev. Sci. Instrum., 57, 2441 (1986).
  • F. Anderegg et al., “Ion Heating Due to Rotation and Collision in Magnetized Plasma,” Phys. Rev. Lett., 57, 329 (1986).
  • J. Bowles, R. Mcwilliams, and N. Rynn, “Direct Measurement of Velocity-Space Transport in a Fully Ionized Plasma,” Phys. Rev. Lett., 68, 1144 (1992).
  • E.A. Den Hartog, T.R. O’Brian, and J.E. Lawler, “Electron Temperature and Density Diagnostics in a Helium Glow Discharge,” Phys. Rev. Lett., 62, 1500 (1989).
  • K. Muraoka and M. Maeda, “Review Article: Application of Laser-Induced Fluorescence to High-Temperature Plasmas,” Plasma Phys. Control. Fusion, 35, 633 (1993).
  • R. Burhenn et al., “Derivation of Local Impurity Transport Quantities from Soft-X Radiation Evolution During Tracer Injection at W7-AS,” Rev. Sci. Instrum., 70, 603 (1999)
  • R. Burhenn et al., “Impurity Transport Studies in the Wen-delstein 7-AS Stellarator,” Fusion Sci. Technol., 46, 115 (2004).
  • K. Matsunaga et al., “Measurement of the Magnetic Field in a Plasma Using an Impurity Probe Spectroscopy,” Jpn. J. Appl. Phys., 20, 10, L713 (1981).
  • B. Schweer et al., “Electron Temperature and Electron Density Profiles Measured with a Thermal He-Beam in the Plasma Boundary of TEXTOR,” J. Nucl. Mater., 196198, 174 (1992).
  • A.R. Field et al., “Optimized Instrumentation for Edge Te and ne Measurements on COMPASS-D Tokamak from He I Line Intensity Ratios,” Rev. Sci. Instrum., 70, 355 (1999).
  • A.R. Field et al., “H-Mode Studies Using HELIOS (HELium Injection and Optical Spectroscopy) Diagnostic on COMPASS-D To-kamak”, 26thEPS Conf. Controlled Fusion and Plasma Physics, Maastricht, The Netherlands, June 14–18, 1999, European Physical Society (1999).
  • P.G. Carolan et al., “Synergy of Multiviewing Spectroscopic Diagnostics on COMPASS-D,” Rev. Sci. Instrum., 72, 881 (2001).
  • B. Schweer, M. Brix, and M. Lehnen, “Measurement of Edge Parameters in TEXTOR-94 at the Low and High Field Side with Atomic Beam,” J. Nucl. Mater., 266269, 673 (1999).
  • K. Takiyama et al., “Spectroscopic Method to Directly Measure Elecric Field Distribution in Tokamak Edge Plasma,” Rev. Sci. Instrum., 68, 1038 (1997).
  • J.L. Terry et al., “Visible Imaging of Turbulence in the SOL of the Alcator C-Mod Tokamak,” J. Nucl. Mater., 290, 757 (2001).
  • R.J. Maqueda et al., “Edge Turbulence Measurements in NSTX by Gas Puff Imaging,” Rev. Sci. Instrum., 72, 931 (2001).
  • S.J. Zweben et al., “Edge Turbulence Imaging in the Alcator C-Mod Tokamak,” Phys. Plasmas, 9, 1981 (2002).
  • J.L. Terry et al., “Observations of the Turbulence in the Scrape-Off-Layer of Alcator C-Mod and Comparisons with Simulation,” Phys. Plasmas, 10, 1739 (2003).
  • R.J. Maqueda et al., “Gas Puff Imaging of Edge Turbulence,” Rev. Sci. Instrum., 74, 2020 (2003)(invited).
  • J.L. Terry et al., “High Speed Movies of Turbulence in Alcator C-Mod,” Rev. Sci. Instrum., 75, 4196 (2004).
  • S.J. Zweben et al., “Structure and Motion of Edge Turbulence in the National Spherical Torus Experiment and Alcator C-Mod,” Phys. Plasmas, 13, 056114 (2006).
  • H. Thomsen et al., “PatternRecognitionTechniquesinPlasma Turbulence Imaging,” 32nd EPS Conf. Plasma Physics, Tarragona, Spain, June 27–July 1, 2005, ECA Vol. 29C, P-2.030, EuropeanPhys-ical Society (2005).
  • J. Baldzuhn, L. Yao, and W. Asteam, “A SupersonicGas Jet on the Stellarator W7-AS,” Proc. 30th EPS Conf. Controlled Fusion and Plasma Physics, St. Petersburg, Russia, July 7–11, 2003, Vol. 27A, P-4.166pd, European Physical Society (2003).
  • L. Yao and J. Baldzuhn, “Experiments on Gas Jets in the Wendelstein7-ASStellarator,” PlasmaSci.Technol., 5, 5, 1933 (2003).
  • TFR GROUP, “Deuterium Pellet Injection into Plasmas of the Fontenay-aux-Roses Tokamak TFR: Photographic and Spectroscopic Measurements oftheAblation Zone,” Europhys. Lett., 2, 267 (1986).
  • R.D. Durst, P.E. Phillips, and W.L. Rowan, “q-Profile Measurement in Tokamaks Using Fueling Pellets,” Rev. Sci. Instrum., 59, 1623 (1988).
  • S.M. Egorov et al., “Observation of a Magnetic Field Linein the T-10 Tokamak,” JETP Lett., 46, 180 (1987).
  • E.S. Marmar and J.L. Terry, “Measurement of the Internal Magnetic Field in Tokamaks Utilizing Impurity Pellets: A New Detection Technique,” Rev. Sci. Instrum., 61, 3081 (1990); J.L. TERRY et al., “Imaging of Lithium Pellet Ablation Trails and Measurement of q Profiles in TFTR,” Rev. Sci. Instrum., 63, 5191 (1992).
  • H.W. MÜLler et al., “Improvement of q-Profile Measurement by Fast Observation of Pellet Ablation at ASDEX Upgrade,” Rev. Sci. Instrum., 68, 4051 (1997).
  • E.S. Marmar et al., “Measurement of the Current Density Profile in the Alcator C Tokamak Using Lithium Pellets,” Rev. Sci. Instrum., 60, 3739 (1989).
  • J.L. Terry et al., “Measurement of Internal Magnetic Field Pitch Using Li Pellet Injection on TFTR,” Rev. Sci. Instrum., 61, 2908 (1990)(invited).
  • S.M. Egorov et al., “Current Density Profile and Electron Beam Localization Measurements Using Carbon Pellets on T-10,” Nucl. Fusion, 32, 2025 (1992).
  • Z. Wang and G.A. Wurden, “Hypervelocity Dust Beam Injection for Internal Magnetic Field Mapping,” Rev. Sci. Instrum., 74, 1887 (2003).
  • K. Khlopenkov and S. Sudo, “New Particle Transport Diagnostics with Tracer-Encapsulated Solid Pellet,” Plasma Phys. Control. Fusion, 43, 1547 (2001).
  • N. Namura et al., “Impurity Transport Studies by Means of Tracer-Encapsulated Solid Pellet Injection in Neutral Beam Heated Plasmas on LHD,” Plasma Phys. Control. Fusion, 45, 27 (2002).
  • S. Sudo et al., “Racer-Encapsulated Pellet Injector for Plasma Diagnostics,” Rev. Sci. Instrum., 76, 053507 (2005).
  • D. Stutman et al., “High Throughput Ultrasoft X-Ray Polychromator for Embedded Impurity Pellet Injection Studies,” Rev. Sci. Instrum., 76, 013508 (2005).
  • C. Honda et al., “Transient Local Magnetic Field Measurement in a Bumpy Torus by Rapid-Frequency-Scan Laser Spectros-copy,” Rev. Sci. Instrum., 58, 1593 (1987).
  • M. Wickham et al., “Barium Ion Beam Probe for Magnetic Field, Diamagnetism, and Space Potential Measurement in Plasmas,” Rev. Sci. Instrum., 55, 1748 (1984).
  • M. Wickham, N.H. Lazar, and N. Rynn, “Barium Ion Zeeman and Space PotentialDiagnostic,” Rev. Sci. Instrum., 56, 1033 (1985).
  • U. Feldman et al., “Magnetic Field Measurements in Toka-mak Plasmas,” J. Appl. Phys., 56, 2512 (1984).
  • J.F. Seeley et al., “Magnetic Field Measurements Based on the Zeeman Splitting of Forbidden Transitions,” Rev. Sci. Instrum., 56, 855 (1985).
  • H.A. Davis et al., “Progress Toward a Microsecond Duration, Repetitively Pulsed, Intense-Ion Beam for Active Spectroscopic Measurements on ITER,” Rev. Sci. Instrum., 68, 332 (1997).
  • D.M. Thomas et al., “Prospects for Core Helium Density and Related Measurements on ITER Using Active Charge Exchange,” in Diagnostics for Experimental Thermonuclear Fusion Reactors 2, P.E. Stott et al., Eds., pp. 361–370, Plenum Press, New York (1998).
  • A. Malaquias et al., “Active Beam Spectroscopy Diagnostics for ITER: Present Status,” Rev. Sci. Instrum., 15, 10, 3393 (2004) (invited).
  • M. Von Hellermann et al., “Review of Beam Aided Diagnostics for ITER,” Paper IT/P1-26, Proc. 21st IAEA Fusion Energy Conference, Chengdu, China, October 16–21, 2006, International Atomic Energy Agency (2006) IAEA-CN-149.
  • A.J. H. DonnÉ and A.E. Costley, “Key Issues in Diagnostics for Burning Plasma Experiments,” IEEE Trans. Plasma Sci., 32, 1, 177 (2004).
  • A. Costley, ITER Organization, Personal Communication (2008).
  • I.V. Moskalenko et al., “Development of Laser-Induced Fluorescence System for Diagnosis of ITER Divertor Plasmas,” Plasma Devices Oper., 12, 247 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.