28
Views
2
CrossRef citations to date
0
Altmetric
Edge Physics and Exhaust

Erosion and Deposition Mechanisms in Fusion Plasmas

Pages 230-245 | Published online: 10 Aug 2017

References

  • Progress in the ITER Physics Basis, Nucl. Fusion 47 (2007).
  • G. COUNSELL et al., “Tritium retention in next step devices and the requirements for mitigation and removal techniques,” Plasma Phys. Control. Fusion, 48, No. 12 B, B189–B199 (2006).
  • A. KIRSCHNER et al., “Estimations of erosion fluxes, material deposition and tritium retention in the divertor of ITER,” J. Nucl. Mat., 390-391, 152 (2009).
  • R. BEHRISCH (ed.), “Sputtering by particle bombardment. I. Physical sputtering of singleelement solids,” Topics in applied physics, Vol. 47, Berlin/Heidelberg/New York, Springer 1981.
  • J. BOHDANSKY, “A universal relation for the sputtering yield of monoatomic solids at normal ion incidence,” Nucl. Instr. Meth., B2, 587 (1984).
  • W. ECKSTEIN, “Calculated sputtering, reflection and range values,” Report IPP, 9/132 (2002).
  • B. UNTERBERG, theses proceedings.
  • M. KÜSTNER, W. ECKSTEIN, E. HECHTL, J. ROTH, “Angular dependence of the sputtering yield of rough beryllium surfaces,” J. Nucl. Mat., 265, 22 (1999).
  • H.L. BAY, W. BERRES, E. HINTZ, “Surface normal velocity distribution of sputtered Zr-atoms for light-ion irradiation,” Nucl. Instr. Meth., 194, 555 (1982).
  • J. BOHDANSKY, “Sputtering,” in Data compendium for plasma-surface interactions, Nucl. Fusion, Special Issue, eds. R.A. Langley et al. (1984).
  • R.K. JANEV, Yu.V. RALCHENKO, T. KENMOTSU, K. HOSAKA, “Unified analytic representation of physical sputtering yield,” J. Nucl. Mat., 290-293, 104 (2001).
  • Y. YAMAMURA, Y. ITIKAWA, N. ITOH, “Angular dependence of sputtering yields of monoatomic solids,” Japan Report, IPPJ-AM-26, Nagoya University (1983).
  • W. ECKSTEIN, Computer simulation of ion-solid interaction, Springer, Berlin (1991).
  • W. ECKSTEIN, R. DOHMEN, A. MUTZKE, R. SCHNEIDER, “SDTrimSP: A Monte-Carlo code for calculating collision phenomena in randomized targets,” Report IPP, 12/3 (2007).
  • W.D. WILSON, L.G. HAGGMARK, J.P. BIERSACK, “Calculations of nuclear stopping, ranges, and straggling in the low-energy region,” Phys. Rev, B 15, 2458 (1977).
  • W. ECKSTEIN, W. MÖLLER, “Computer simulation of preferential sputtering,” Nucl. Instr. Meth. Phys. Research, B7/8, 727 (1985).
  • W. ECKSTEIN, “Oscillations of sputtering yield,” Nucl. Instr. Meth. Phys. Research, B171, 435 (2000).
  • J. KÜPPERS, “The hydrogen surface chemistry of carbon as a plasma facing material,” Surf. Sci. Rep., 22, 249 (1995).
  • E. VIETZKE et al., “Chemical erosion of amorphous hydrogenated carbon films by atomic and energetic hydrogen”, J. Nucl. Mat., 145-147, 443 (1987).
  • J. ROTH, “Chemical erosion of carbon based materials in fusion devices,” J. Nucl. Mat., 266-269, 51 (1999).
  • J. ROTH et al., “Flux dependence of carbon chemical erosion by deuterium ions,” Nucl. Fusion, 44, L21-L25 (2004).
  • E. VIETZKE, K. FLASKAMP, V. PHILIPPS, “Hydrocarbon formation in the reaction of atomic hydrogen with pyrolytic graphite and the synergistic effect of argon ion bombardment,” J. Nucl. Mat., 111+112, 763 (1982).
  • E. VIETZKE, V. PHILIPPS, K. FLASKAMP, Chemical reactivity of atomic hydrogen on graphite pre-irradiated by hydrogen and argon ions,” J. Nucl. Mat, 162-164, 898 (1989).
  • Y. UEDA, K. TOBITA, Y. KATOH, “PSI issues at plasma facing surfaces of blankets in fusion reactors,” J. Nucl. Mat., 313-316, 32 (2003).
  • T. SHIMIDA et al., “Blister formation on tungsten surface by irradiating hydrogen and carbon mixed ion beam,” J. Plasma and Fus. Research, 78, 289 (2002).
  • V. PHILIPPS, K. FLASKAMP, E. VIETZKE, “Enhancement of the sputtering yield of pyrolytic graphite at elevated temperatures,” J. Nucl. Mat., 111&112, 781 (1982).
  • V. PHILIPPS et al., “Investigation of radiation enhanced sublimation of graphite test-limiters in TEXTOR,” J. Nucl. Mat., 220-222, 467 (1995).
  • D.A. ALMAN, D.N. RUZIC, “Molecular dynamics simulation of carbon/hydrocarbon reflection coefficients on a hydrogenated graphite surface,” J. Nucl. Mat., 313-316, 182 (2003).
  • K. OHYA et al., “Simulation of hydrocarbon reflection from carbon and tungsten surfaces and its impact on codeposition patterns on plasma facing components,” J. Nucl. Mat., 390-391, 72 (2009).
  • W. ECKSTEIN, H. VERBEEK, “Data on light ion reflection,” Report IPP, 9/32 (1979).
  • I. BIZYUKOV et al., “Relevance of surface roughness to tungsten sputtering and carbon implantation,” J. Appl. Phys., 100, 113302 (2006).
  • M. VAN SCHOOR, these proceedings.
  • C. HOPF et al., “Surface loss probabilities of hydrocarbon radicals on amorphous hydrogenated carbon film surfaces,” J. Appl. Phys., 87, 2719 (2000).
  • M. MEIER, A. VON KEUDELL, W. JACOB, “Consequences of the temperature and flux dependent sticking coefficient of methyl radicals for nuclear fusion experiments,” Nucl. Fus., 43, 25 (2003).
  • A. VON KEUDELL, W. JACOB, “Elementary processes in plasma-surface interaction: H-atom and ion-induced chemisorption of methyl on hydrocarbon film surfaces,” Progress in Surf. Science, 76, 21 (2004).
  • D. A. ALMAN, D. N. RUZIC, “Molecular dynamics simulation of hydrocarbon reflection and dissociation coefficients from fusion-relevant carbon surfaces,” Phys. Scri., T111, 145 (2004).
  • H. TOYODA, H. KOJIMA, H. SUGAI, “Mass spectroscopic investigation of the CH3 radicals in a methane rf discharge,” Appl. Phys. Lett., 54, 1507 (1989).
  • M. SHIRATANI et al., “Surface reaction kinetics of CH3 in CH4 rf discharge studied by time-resolved threshold ionization mass spectrometry,” Jap. J. Appl. Phys., 36, 4752 (1997).
  • P. TRÄSKELIN et al., “Molecular dynamics simulations of CH3 sticking on carbon first wall structures,” J. Nucl. Mat., 313-316, 52 (2003).
  • E. NEYTS et al., “Unraveling the deposition mechanism in a-C:H thin-film growth: A molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces,” L. Appl. Phys., 99, 014902 (2006).
  • G. VAN ROOIJ, these proceedings.
  • U. SAMM, “TEXTOR: A pioneering device for new concepts in plasma-wall interaction, exhaust, and confinement,” in Special Issue on TEXTOR, Fusion Science Techn., 47, 73 (2005).
  • A. POSPIESZCZYK et al., “Chemical erosion measurements from various carbon based limiters and coatings from TEXTOR-94,” J. Nucl. Mat., 241-243, 833 (1997).
  • A. KRETER et al., “Investigation of carbon transport by 13CH4 injection through graphite and tungsten test limiters in TEXTOR,” Plasma Phys. Control. Fus., 48, 1401 (2006).
  • A. KRETER et al., “Study of local carbon transport on graphite, tungsten and molybdenum test limiters in TEXTOR by 13CH4 tracer injection,” J. Nucl. Mat., 363-365, 179 (2007).
  • A. KIRSCHNER et al., “Simulation of the plasma-wall interaction in a tokamak with the Monte-Carlo code ERO-TEXTOR,” Nucl. Fus. 40, 989 (2000).
  • A. KIRSCHNER et al., “Modelling of carbon transport in fusion devices: evidence of enhanced reerosion of in-situ re-deposited carbon,” J. Nucl. Mat., 328, 62 (2004).
  • S. DROSTE et al., “Modelling of 13CH4 injection experiments with graphite and tungsten test limiters in TEXTOR using the coupled code ERO-SDTrimSP,” Plasma Phys. Control. Fus. 50, 015006 (2008).
  • V. PHILIPPS et al., “Experiments with tungsten limiters in TEXTOR-94,” J. Nucl. Mat., 258, 858 (1998).
  • G. SERGIENKO et al., “Erosion of a tungsten limiter under high heat flux in TEXTOR,” J. Nucl. Mat., 363-365, 96 (2007).
  • A. KRETER et al., “Nonlinear impact of edge localized modes on carbon erosion in the divertor of the JET tokamak,” PRL, 102, 045007 (2009).
  • B.I. KHRIPUNOV et al., “Evidence of radiation damage impact on material erosion in plasma environment,” J. Nucl. Mat., 390-391, 921 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.