15
Views
3
CrossRef citations to date
0
Altmetric
Technical Paper

Theoretical Calculations and Analysis for the n + 59Co Reaction up to 20 MeV

, , &
Pages 331-345 | Published online: 10 Apr 2017

REFERENCES

  • C. D. BOWMAN, “Nuclear Energy Generation and Waste Transmutation Using an Accelerator-Driven Intense Thermal Neutron Source,” Nucl. Instrum. Methods A, 320, 336 (1992).
  • M. B. CHADWICK et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Nucl. Data Sheets, 107, 2931 (2006).
  • S. CHIBA et al., “Evaluation of JENDL Fusion File,” JAERI-M 92-027, p. 35, Japan Atomic Energy Research Institute (1992).
  • C. KALBACH, “Systematics of Continuum Angular Distributions: Extensions to Higher Energies,” Phys. Rev. C, 37, 2350 (1988).
  • F. D. BECCHETTI and G. W. GREENLEES, “Nucleon-Nucleus Optical-Model Parameters, A > 40, E < 50 MeV,” Phys. Rev., 182, 4, 1190 (1969).
  • Q.-B. SHEN, “APMN—A Program for Automatically Searching Optimal Optical Potential Parameters in E ≤ 300 MeV Energy Region,” Nucl. Sci. Eng., 141, 78 (2002).
  • G. DE SAUSSURE, N. M. LARSON, J. A. HARVEY, and N. W. HILL, “Multilevel Resonance Analysis of 59Co Neutron Transmission Measurements,” Ann. Nucl. Energy, 19, 7, 393 (1992).
  • W. P. ABFALTERER et al., “Level Widths and Level Densities of Nuclei in the 32 [A [60 Mass Region Inferred from Fluctuation Analysis of Total Cross Sections,” Phys. Rev. C, 62, 064312 (2000).
  • W. P. ABFALTERER et al., “Measurement of Neutron Total Cross Sections up to 560 MeV,” Phys. Rev. C, 63, 4, 044608 (2001).
  • C. S. PIERRE et al., “Elastic Scattering of 14-MeV Neutrons by Al, S, Ti, and Co,” Phys. Rev., 115, 4, 999 (1959).
  • W. E. KINNEY and F. G. PEREY, “Neutron Elastic- and Inelastic-Scattering Cross Sections for Co in the Energy Range 4.19 to 8.56 MeV,” ORNL-4549, p. 6, Oak Ridge National Laboratory (1970).
  • A. B. SMITH et al., “Elastic and Inelastic Scattering of Fast Neutrons from Co, Cu, Zn,” Phys. Rev., 135B, 76 (1964).
  • B. HOLMQVIST et al., “Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations,” At. Energiya, 366, 06 (1969).
  • M. ABDEL-HARITH et al., “Elastic and Inelastic Scattering of 3.4 MeV Neutrons by V-51, Co-59 and Pb-206, 207,” GER Zentralinst. f. Kernforschurg Rossendorf Reports, 315, 12 (1976).
  • G. V. GORLOV et al., “Elastic Scattering of Polarized Neutrons of the Nuclei Be-9, C-12, Co-59, Ni-62, Se-80, Nb-93, Cd-114, In-115, Sn-118, I-127, Pb and Bi-209,” Dokl. Akad. Nauk, 158, 3, 574 (1964).
  • M. GREGOR et al., “Nonelastic Neutron Cross Sections at 14 MeV,” Phys. Rev., 108, 3, 726 (1957).
  • M. K. MACHWE et al., “Elastic Scattering of 3.7-MeV Neutrons from S, Fe, Co, Ni, Cu, and Zn,” Phys. Rev., 114, 6, 1563 (1959).
  • V. I. STRIZHAK, “Inelastic Scattering Cross Sections of Nuclei for 2.5 MeV Neutrons,” Zh. Ehksp. Teor. Fiz., 31, 907 (1956).
  • M. WALT and H. H. BARSCHALL, “Scattering of 1-MeV Neutrons by Intermediate and Heavy Elements,” Phys.Rev., 93, 1062 (1954).
  • P. T. GUENTHER, P. A. MOLDAUER, A. B. SMITH, and J. F. WHALEN, “Cobalt Fast-Neutron Cross Sections,” Nucl. Sci. Eng., 54, 273 (1974).
  • D. E. VELKLEY et al., “Scattering of 9.0-MeV Neutrons by Al, Si, Fe, Ni, and Co,” Phys. Rev. C, 9, 2181 (1974).
  • M. M. NAGADI et al., “Dispersive Optical-Model and Coupled-Channel Descriptions of Neutron Scattering from 27Al and 59Co up to 80 MeV,” Phys. Rev. C, 68, 044610 (2003).
  • J. C. FERRER et al., “Nucleon Elastic Scattering at 11 MeV and the Isospin Dependence of the Neutron-Nucleus,” Nucl. Phys. A, 275, 325 (1977).
  • L. F. HANSEN et al., “Test of Microscopic Optical Model Potentials for Neutron Elastic Scattering at 14.6 MeV over a Wide Mass Range,” Phys. Rev. C, 31, 111 (1985).
  • Y. SHI and Y. HAN, “Calculation and Analysis of Proton-Induced Reactions on 58Ni at Incident Energies from Threshold to 200 MeV,” Nucl. Instrum. Methods Phys. Res. B, 264, 207 (2007).
  • Y. HAN et al., “Deuteron Global Optical Model Potential for Energies up to 200 MeV,” Phys. Rev. C., 74, 044615 (2006).
  • C. M. PEREY and F. G. PEREY, “Compilation of Phenomenological Optical-Model Parameters 1954–1975,” At. Data Nucl. Data Tables, 17, 1 (1976).
  • P. D. KUNZ, “Zero Range Distorted Wave Born Approximation,” CB390, Department of Physics, University of Colorado.
  • C. M. BAGLIN, “Nuclear Data Sheets for A = 59,” Nucl. Data Sheets, 95, 215 (2002).
  • S. P. SIMAKOV et al., “Neutron Inelastic Scattering at 5–8.5 MeV for Co-59, Y-89, Nb-93, Mo-93, In-115, Ta-181 and Bi-209 Nuclei,” Vop. At. Nauki I Tekhn., Ser. Yadernye Konstanty, 4, 12, 74 (1992).
  • P. G. YOUNG et al., Proc. Workshop Computation and Analysis of Nuclear Data Relevant to Nuclear Energy and Safety, Trieste, Italy, 1993, M. K. MEHTA and J. J. SCHMIDT, Eds. (1993).
  • A. J. KONING et al., “TALYS: Comprehensive Nuclear Reaction Modeling,” Proc. Int. Conf. Nuclear Data for Science and Technology (ND2004), Santa Fe, New Mexico, September 26–October 1, 2004.
  • M. HERMAN et al., “EMPIRE: Nuclear Reaction Model Code System for Data Evaluation,” Nucl. Data Sheets, 108, 2655 (2007).
  • J. ZHANG, “UNF Code for Fast Neutron Reaction Data Calculations,” Nucl. Sci. Eng., 142, 207 (2002).
  • G. MANTZOURANIS et al., “Generalized Exciton Model for the Description of Preequilibrium Angular Distribution,” Z. Phys. A, 276, 145 (1976).
  • Z. SUN et al., “Angular Distribution Calculations Based on the Exciton Model Taking into Account of the Influence of the Fermi Motion and the Pauli Principle,” Z. Phys. A, 305, 61 (1982).
  • M. B. CHADWICK and P. OBLOZINSKY, “Particle-Hole State Densities with Linear Momentum Angular Distribution in Pre-Equilibrium Reaction,” Phys. Rev., 44, 1740 (1991).
  • A. IWAMOTO and K. HARADA, “Mechanism of Cluster Emission in Nucleon-Induced Preequilibrium Reactions,” Phys. Rev. C, 26, 5, 1821 (1982).
  • K. SATO et al., “Pre-Equilibrium Emission of Light Composite Particles in the Framework of the Exciton Model,” Phys. Rev., 28, 1527 (1983).
  • J. ZHANG, “Improvement of Computation on Neutron Induced Helium Gas Production,” Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, Tennessee, May 9–13, 1994, Vol. 2, p. 932 (1994).
  • W. DILG et al., “Level Density Parameters for the Back-Shifted Fermi Gas Model in the Mass Range 40 < A < 250,” Nucl. Phys. A, 217, 269 (1973).
  • A. B. SMITH et al., “Energy Dependence of the Optical Model Potential for Fast Neutron Scattering from Cobalt,” Nucl. Phys. A, 483, 50 (1988).
  • V. C. ROGERS et al., “Inelastic Scattering Cross Sections of 19F, 58,60,62Ni, and 59Co,” Trans. Am. Nucl. Soc., 14, 806 (1971).
  • R. V. LECLAIRE et al., “Cross Sections in the 59Co(n, n’-gamma)59Co Reaction from 1.1 to 3.3 MeV,” Phys. Rev. C, 18, 3, 1185 (1978).
  • E. ALMEN-RAMSTROM, “A Systematic Study of Neutron Inelastic Scattering in the Energy Range 2.0 to 4.5 MeV,” At. Energiya, 503, 04 (1975).
  • A. I. LASHUK et al., “Gamma-Quanta Production Cross-Sections at Inelastic Scattering of the Neutrons on the Nuclei of Reactor Construction Materials,” Vop. At. Nauki I Tekhn., Ser. Yadernye Konstanty, 1, 26 (1994).
  • V. CORCALCIUC et al., “A Study of the Neutron Induced Reactions for F-19, Fe-56, Co-59 in the Energy Interval 16 to 22 MeV,” Nucl. Phys. A, 307, 3, 445 (1978).
  • J. W. MEADOWS et al., “Differential Measurements and an Evaluation of the 59Co(n, alpha)56Mn Reaction Cross Section,” Ann. Nucl. Energy, 14, 603 (1987).
  • P. GRABMAYR and P. HILLE, “Gamma Ray Multiplicity of Co-59 After Excitation by Inelastic Scattering of 14.5 MeV Neutrons,” Proc. Int. Conf. Neutron Physics and Nuclear Data, Harwell, p. 204 (1978).
  • I. FUJITA et al., “Inelastic Scattering of 14 MeV Neutrons by Medium Weight Nuclei,” J. Nucl. Sci. Technol., 9, 301 (1973).
  • D. L. BRODER et al., “Inelastic Neutron Scattering (n, n Gamma) by Fluorine, Iron, Cobalt, Nickel and Tantalum,” Proc. 2nd Int. Conf. Nuclear Data for Reactors, Helsinki, Finland, Vol. 2, p. 295 (1970).
  • A. PAULSEN, “The Spin Cut-Off Factor for Co60,” Z. Phys., 205, 226 (1967).
  • F. RIGAUD et al., “Gamma-Ray Spectra Following the Capture of 14 MeV Neutrons by 27-Co-59, 41-Nb-93 and 45-Rh-103,” Nucl. Phys. A., 173, 551 (1971).
  • R. R. SPENCER and R. L. MACKLIN, “Neutron Capture Cross Section of Cobalt-59 in the Energy Range 2.5 to 1000 keV,” Nucl. Sci. Eng., 61, 346 (1976).
  • D. L. SMITH and J. W. MEADOWS, “Cross-Section Measurement of (n, p) Reactions for 27Al, 46,47,48Ti, 54,56Fe, 58Ni, 59Co, and 64Zn from Near Threshold to 10 MeV,” Nucl. Sci. Eng., 58, 314 (1975).
  • D. L. SMITH and J. W. MEADOWS, “Measurement of Cross Sections for the 59Co(n, p)59Fe Reaction Near Threshold,” Nucl. Sci. Eng., 60, 187 (1976).
  • J. R. WILLIAMS et al., “Cross Sections for the 59Co(n, p)59Fe Reaction Between 14 and 19 MeV,” Radiat. Effects and Defects in Solids, 92, 215 (1986).
  • M. VIENNOT, M. BERRADA, G. PAIC, and S. JOLY, “Cross-Section Measurements of (n, p) and (n, np + pn + d) Reactions for Some Titanium, Chromium, Cobalt, Nickel, and Zinc Isotopes Around 14 MeV,” Nucl. Sci. Eng., 108, 289 (1991).
  • M. S. UDDIN et al., “Excitation Functions of (n, p) and (n, a) Reactions on the Isotopic Vanadium and Cobalt in the Energy Range of 13.57–14.71 MeV,” Indian J. Pure Appl. Phys., 39, 487 (2001).
  • T. LI et al., “The Cross Section Measurements for Co-59(n, p)Fe-59, Co-59(n, alpha)Mn-56 and Co-59(n, 2n)Co-58 Reaction,” High Energy Phys. Nucl. Phys., Chinese Ed., 14, 6, 542 (1990).
  • W. MANNHART et al., “Measurement of the Co-59(n, alpha)Mn-56, Co-59(n, p)Fe-59 and Co-59(n, 2n)Co58m+g Cross Sections,” Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, Tennessee, May 9–13, 1994, Vol. 2, p. 285 (1994).
  • W. MANNHART and D. SCHMIDT, “Measurement of Neutron Activation Cross Sections in the Energy Range from 8 MeV to 15 MeV,” PTB-N-53_200701, Physikalisch-Technische Bundesanstalt (2007).
  • V. SEMKOVA et al., “Measurement of the Ni-58(n, t)Co-59, Co-59(n, p)Fe-59 and Cu-63(n, alpha)Co-60 Reaction Cross Sections from 14 to 20 MeV,” Proc. Conf. Nuclear Data for Science and Technology, Santa Fe, Mexico, September 26–October 1, 2004, p. 1019 (2004).
  • T. SHIMIZU et al., “Measurements of Activation Cross Sections of (n, p) and (n, [alpha]) Reactions with d-D Neutrons in the Energy Range 2.1–3.1 MeV,” Ann. Nucl. Energy, 31, 975 (2004).
  • F. GABBARD and B. D. KERN, “Cross Sections for Charged Particle Reactions Induced in Medium Weight Nuclei by Neutrons in the Energy Range 12–18 MeV,” Phys. Rev., 128, 3, 1276 (1962).
  • D. C. SANTRY and J. P. BUTLER, “Excitation Curves for the Reaction Fe56(n, p)Mn56 and Co59(n, alpha)Mn56,” Can. J. Phys., 42, 1030 (1964).
  • H. LISKIEN and A. PAULSEN, “Cross-Section Measurement for the Threshold Reactions Fe56(n, p)Mn56, Co59(n, a)Mn56 and Cu63(n, 2n)Cu62 Between 12.6 and 19.6 MeV Neutron Energy,” J. Nucl. Energy, 2, 19, 73 (1965).
  • H. LISKIEN and A. PAULSEN, “Cross Sections for the Cu63(n, a)Co60, Ni60(n, p)Co60 and Some Other Threshold Reactions Using Neutrons from the Be9(a, n)C12 Reaction,” Nukleonik, 8, 315 (1966).
  • M. BORMANN et al., “Measurement of Some (n, a) Cross Sections in the Energy Range 12–19 MeV,” J. De Physique, 22, 602 (1961).
  • Y. IKEDA et al., “Activation Cross Section Measurements for Fusion Reactor Structural Materials at Neutron Energy from 13.3 to 15.0 MeV Using FNS Facility,” JAERI-1312, Japan Atomic Energy Research Institute (1988).
  • E. ZUPRANSKA et al., “Excitation Functions for (n, α) Reactions in the Neutron Energy Range from 13 to 18 MeV,” Acta Phys. Pol. Ser. B, 11, 853 (1980).
  • J. HUANG et al., “Measurement of Cross-Sections for Co-59(n, a)Mn-56 and Co-59(n, 2n)Co-58-M+G Reactions,” International Nuclear Data Committee (1989).
  • M. BERRADA, “Measurement and Analysis of 14 MeV Neutron Nuclear Reaction Cross-Sections by X and Gamma Spectroscopy,” Personal Communication (1984).
  • C. S. KHURANA and I. M. GOVIL, “The (n, x), (n, p) and (n, t) Cross-Sections St 14.8MeV,” Nucl. Phys., 69, 153 (1965).
  • N. I. MOLLA et al., “Cross Sections of (n, p), (n, a) and (n, 2n) Processes on Scandium, Vanadium, Cobalt, Copper and Zinc Isotope in the Energy Range 13.57–14.71 MeV,” Proc. Int. Conf. Nuclear Data for Science and Technology, Gatlinburg, Tennessee, May 9–13, 1994, Vol. 2, p. 938 (1994).
  • R. DOCZI et al., “Excitation Functions of Some (n, p) and (a, alpha) Reactions from Threshold to 16 MeV,” Nucl. Sci. Eng., 129, 164 (1998).
  • A. A. FILATENKOV et al., “Systematic Measurements of Cross-Sections at Neutron Energies 13.4–14.9 MeV,” Report, RI-252, Khlopin Radiev Institute (1999).
  • T. BIRO et al., “Cross Sections of (n, t) Reactions with 14.7 MeV Neutrons Determined by Direct Beta-Counting of Tritium,” J. Inorganic Nucl. Chem., 37, 1583 (1975).
  • C. S. KHURANA and I. M. GOVIL, “Measurement of (n, t) Cross-Sections at 14 MeV and Calculation of Excitation Functions for Fast Neutron Reactions,” Nucl. Phys. A, 319, 157 (1979).
  • S. M. QAIM et al., “Excitation Functions of (n, t) Reactions on Al-27, Co-59, and Nb-93,” Phys. Rev. C, 25, 1, 203 (1982).
  • L. R. VEESER et al., “Cross Sections for (n, 2n) and (n, 3n) Reactions above 14 MeV,” Phys. Rev. C, 16, 5, 1792 (1977).
  • S. K. GHORAI et al., “The (n, 2n) Isomeric Cross Section Ratios and the (n, 2n) and (n, alpha) Excitation Functions for Co-59,” Ann. Nucl. Energy, 7, 41 (1980).
  • L. R. GREENWOOD, “Recent Research in Neutron Dosimetry and Damage Analysis for Materials Irradiations,” ASTM-STP-956, p. 743, American Society for Testing and Materials (1987).
  • S. OKUMURA, “Isomer Pair Cross Sections by 13.4–15.0 MeV Neutrons,” Nucl. Phys. A, 93, 74 (1967).
  • A. PAULSEN and H. LISKIEN, “Cross Sections for the Reactions Mn55(n, 2n), Co59(n, 2n), Mg24(n, p) and Al27(n, a) in the 12.6–19.6 MeV Energy Region,” J. Nucl. Energy AB, 19, 907 (1965).
  • J. FREHAUT et al., “Status of (n, 2n) Cross Section Measurements at Bruyeres-Le-Chatel,” Personal Communication (1980).
  • M. BORMANN et al., “Level Densities of Some Medium Weight Nuclei from Evaporation Spectra of the Alpha Particles from (n, alpha) Reactions,” Z. Naturforsch. A, 21, 988 (1966).
  • J. M. F. JERONYMO et al., “Absolute Cross Sections for Some (n, p), (n, alpha) and (n, 2n) Reactions,” Nucl. Phys., 47, 1, 157 (1963).
  • Y. IKEDA et al., “Measurement of High Threshold Reaction Cross Sections for 13.5 to 15 MeV,” Personal Communication (1984).
  • S. J. HASAN et al., “Precise Measurement of Cross Sections for the Reactions 59-Co(n, 2n) and 59-Co(n, p)59-Fe Around 14 MeV,” J. Phys. G, 12, 397 (1986).
  • E. WEIGOLD and R. N. GLOVER, “Some Activation Measurements and a Comparison with Theoretical (n,2n) Cross Sections and Isomeric Cross Section Ratios,” Nucl. Phys., 32, 106 (1962).
  • J. C. SUITA, A. G. D. SILVA, L. T. AULER, and S. DE BARCOS, “Neutron-Induced Reaction Cross Sections Between 9 and 14 MeV,” Nucl. Sci. Eng., 126, 101 (1997).
  • A. J. M. PLOMPEN et al., “Recent Cross Section Studies with the Activation Technique for Ni, Co and Cu,” Personal Communication (2001).
  • V. SEMKOVA et al., “A Systematic Investigation of Reaction Cross Sections and Isomer Ratios up to 20 MeV on Ni-Isotopes and Co-59 by Measurements with Activation Technique and New Modes Studies of Underlying Reaction Mechanisms,” Nucl. Phys. A, 730, 255 (2004).
  • A. TAKAHASHI et al., “Measurement of Double Differential Neutron Emission Cross Sections at 14.1 MeV for Ca, Mn, Co and W,” JAERI-M-89-214, Japan Atomic Energy Research Institute (1989).
  • O. A. SALNIKOV et al., “Differential Cross Sections of Inelastic Scattering Neutrons on Nuclei Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, W, Bi,” Vop. At. Nauki I Tekhn., Ser. Yadernye Konstanty, 7, 102 (1972).
  • A. P. DEGTJAREV et al., “Angular Distribution of Neutron Groups from (n, xn) Reactions on Fe-56, Co-59, B-93, In-115, Bi-209, and U-238 at Initial Neutron Energy 14.6 MeV,” Yad. Fiz., 34, 2, 299 (1981).
  • Y. E. KOZYR and G. A. PROKOPETS, “Radiative Transitions from Unbound States of Fe and Co Nuclei,” Yad. Fiz., 27, 616 (1978).
  • D. HERMSDORF et al., “Integrated Data from Measurement of Absolute Differential Neutron Emission Cross-Section at 14 MeV Incident Neutron Energy,” Personal Communication (1982).
  • KOKOOO, I. MURATA, and A. TAKAHASHI, “Measurements of Double-Differential Cross Sections of Charged-Particle Emission Reactions for Several Structural Elements of Fusion Power Reactors by 14.1-MeV Incident Neutrons,” Nucl. Sci. Eng., 132, 16 (1999).
  • S. M. GRIMES et al., “The 59Co(n, xα) Reaction from 5 to 50 MeV,” Nucl. Sci. Eng., 124, 271 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.