33
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

Internal Vessel Cooling Feasibility Attributed by Critical Heat Flux in Inclined Rectangular Gap

, , , , &
Pages 13-40 | Published online: 10 Apr 2017

References

  • J. R. WOLF and J. L. REMPE, “TMI-2 Vessel Investigation Project Integration Report,” TMI V(93) EG10 (Oct. 1993).
  • R. E. HENRY and H. K. FAUSKE, “External Cooling of a Reactor Vessel Under SevereAccident Conditions,” Nucl. Eng. Des., 139, 31 (1993).
  • K. Y. SUH and R. E. HENRY, “Debris Interactions in Reactor Vessel Lower Plena During a Severe Accident—I. Predictive Model,” Nucl. Eng. Des., 166, 147 (1996).
  • K. Y. SUH and R. E. HENRY, “Debris Interactions in Reactor Vessel Lower Plena During a Severe Accident—II. Integral Analysis,” Nucl. Eng. Des., 166, 165 (1996).
  • J. L. REMPE, D. KNUDSON, and T. KOHRIYAMA, “Heat Transfer Between Relocated Materials and the RPV Lower Head,” Proc. 9th Int. Conf. Nuclear Engineering (ICONE-9), Nice, France, April 8-12, 2001.
  • M. J. BRUSSTAR and H. MERTE, “Effects of Buoyancy on the Critical Heat Flux in Forced Convection,” J. Thermophys. Heat Transfer, 8, 322 (1994).
  • M. J. BRUSSTAR, H. MERTE, R. B. KELLER, and B. J. KIRBY, “Effects of Heater Surface Orientation on the Critical Heat Flux—I. An Experimental Evaluation of Models for Subcooled Pool Boiling,” Int. J. Heat Mass Transfer, 40, 4007 (1997).
  • J. Y. CHANG and S. M. YOU, “Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72,” J. Heat Transfer, 118, 937 (1996).
  • M. S. EL-GENK and Z. GUO, “Transient Boiling from Inclined and Downward-Facing Surfaces in a Saturated Pool,” Int. J. Refrigeration, 6, 424 (1993).
  • Z. GUO and M. S. EL-GENK, “An Experimental Study of Saturated Pool Boiling from Downward Facing and Inclined Surfaces,” Int. J. Heat Mass Transfer, 35, 2109 (1992).
  • A. H. HOWARD and I. MUDAWAR, “Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surfaces,” Int. J. Heat Mass Transfer, 42, 1665 (1999).
  • I. P. VISHNEV, “Effect of Orientating the Hot Surface with Respect to the Gravitational Field on the Critical Nucleate Boiling of a Liquid,” J. Eng. Phys., 24, 43 (1974).
  • J. E. GALLOWAY and I. MUDAWAR, “CHF Mechanism in Flow Boiling from a Short Heated Wall—II. Theoretical CHF Model,” Int. J. Heat Mass Transfer, 36, 2527 (1993).
  • C. O. GERSEY and I. MUDAWAR, “Effects of Heater Length and Orientation on the Trigger Mechanism for Flow Boiling CHF—II. CHF Model,” Int. J. HeatMass Transfer, 38, 643 (1995).
  • S. H. YANG, W. P. BAEK, and S. H. CHANG, “PoolBoiling Critical Heat Flux of Water on Small Plates: Effects of Surface Orientation and Size,” Int. Commun. HeatMass Transfer, 24, 1093 (1997).
  • Y. CHANG and S. YAO, “Critical Heat Flux of Narrow Vertical Annuli with Closed Bottoms,” J. Heat Transfer, 105, 192 (1983).
  • M. C. CHYU, “Prediction of Boiling Dryout Flux for Restricted Annular Crevice,” Int. J. HeatMass Transfer, 31, 1993 (1988).
  • Y. KATTO and Y. KOSHO, “Critical Heat Flux of Saturated Natural Convection Boiling in a Space Bounded by Two Horizontal Co-Axial Disks and Heated from Below,” Int. J. Multiphase Flow, 5, 219 (1979).
  • S. H. KIM, W. P. BAEK, and S. H. CHANG, “Measurements of Critical Heat Flux for Narrow Annuli Submerged in Saturated Water,” Nucl. Eng. Des., 199, 41 (2000).
  • M. MONDE, H. KUSUDA, and H. UEHARA, “Critical Heat Flux During Natural Convective Boiling in Vertical Rectangular Channels Submerged in Saturated Liquid,” J. Heat Transfer, 104, 300 (1982).
  • Y. KATTO, “Generalized Correlation for Critical Heat Flux of Natural Convective Boiling in Confined Channels,” Trans. Jpn. Soc. Mech. Eng., 44, 3908 (1978) (in Japanese).
  • S. ISHIGAI, K. INOUE, Z. KIWAKI, and T. INAI, “Boiling Heat Transfer from a Flat Surface Facing Downward,” Proc. Int. Heat Transfer Conf., Boulder, Colorado, 1961, p. 224 (1961).
  • P. M. GITHINJI and R. H. SABERSKY, “Some Effects of the Orientation of the Heating Surface in Nucleate Boiling,” J. Heat Transfer, 85, 379 (1963).
  • D. N. LYON, “Boiling Heat Transfer and Peak Nucleate Boiling Fluxes in Saturated Liquid HeliumBetween the Triple Point and Critical Temperature,” Adv. Cryog. Eng., 10, 371 (1965).
  • Y. KATTO, S. YOKOYA, and M. YASUNAKA, “Mechanism of Boiling Crisis and Transition Boiling in Pool Boiling,” Proc. 4th Int. Heat Transfer Conf., Paris, France, 1970, V, B3.2 (1970).
  • T. FUJII and H. IMURA, “Natural Convection Heat Transfer from a Plate with Arbitrary Inclination,” Int. J. Heat Mass Transfer, 15, 755 (1972).
  • R. P. ANDERSON and L. BOVA, “The Role of Downfacing Burnout in Post-Accident Heat Removal,” Trans. Am. Nucl. Soc., 14, 294 (1971).
  • M. JERGEL and R. STEVENSON, “Static Heat Transfer to Liquid Helium in Open Pools and Narrow Channels,” Int. J. Heat Mass Transfer, 14, 2099 (1971).
  • M. JERGEL and R. STEVENSON, “Heat Transfer to Boiling Helium from Aluminum Surfaces,” Cryogenics, 12, 312 (1972).
  • L. BEWILOGUA, R. KNONER, and H. VINZELBERG, “Heat Transfer in Cryogenic Liquids Under Pressure,” Cryogenics, 15, 121 (1975).
  • I. P. VISHNEV, I. A. FILATOV, Y. G. VINOKUR, V. V. GOROKHOV, and G. G. SVALOV, “Study of Heat Transfer in Boiling of Helium on Surfaces with Various Orientations,” Heat Transfer—Sov. Res., 8, 104 (1976).
  • V. I. DEEV, V. E. KEILIN, I. A. KOVALEV, A. K. KONDRATENKO, and V. I. PETROVICHEV, “Nucleate and Film Pool Boiling Heat Transfer to Saturated Liquid Helium,” Cryogenics, 17, 557 (1977).
  • I.I. GOGONIN and S. S. KUTATELADZE, “Critical Heat Flux as a Function of Heater Size for a Liquid Boiling in a Large Enclosure,” J. Eng. Phys., 33, 1286 (1978) (translation).
  • K. NISHIKAWA, Y. FUJITA, S. UCHIDA, and H. OHTA, “Effect of Surface Configuration on Nucleate Boiling Heat Transfer,” Int. J. Heat Mass Transfer, 27, 1559 (1984).
  • D. S. JUNG, J. E. S. VENART, and A. C. M. SOUSA, “Effects of Enhanced Surfaces and Surface Orientation on Nucleate and Film Boiling Heat Transfer in R-11,” Int. J. Heat Mass Transfer, 30, 2627 (1987).
  • C. BEDUZ, R. G. SCURLOCK, and A. J. SOUSA, “Angular Dependence of Boiling Heat Transfer Mechanisms in Liquid Nitrogen,” Adv. Cryog. Eng., 33, 363 (1988).
  • S. NISHIO and G. R. CHANDRATILLEKE, “Steady-State Pool Boiling Heat Transfer to Saturated Liquid Helium at Atmosphere Pressure,” JSMEInt. J., 32 (Series II), 639 (1989).
  • S. M. YOU, “Pool Boiling Heat Transfer with Highly-Wetting Dielectric Fluids,” PhD Thesis, University of Minnesota (1990).
  • A. A. GRIBOV, G. S. TARANOV, N. M. TURCHIN, and A. A. TSYGANOK, “Heat Transfer and Limiting Heat Loads in Water Boiling on Downward-Facing Plane and Spherical Surfaces,” Heat Transfer Res., 25, 754 (1993).
  • V. S. GRANOVSKII, A. A. SULATSKII, and S. M. SHMELEV, “The Crisis of Nucleate Boiling on a Horizontal Surface Facing Downward,” High Temp., 32, 78 (1994).
  • S. J. REED, “Elimination of Boiling Incipience Temperature Drop and Enhancement of Boiling Heat Transfer in Highly Wetting Fluids Through Low Contact Force Attachments,” MS Thesis, Purdue University (1996).
  • S. J. REED and I. MUDAWAR, “Enhancement of Boiling Heat Transfer Using Highly Wetting Liquids with Pressed-on Fins at Low Contact Forces,” Int. J. Heat Mass Transfer, 40, 2379 (1997).
  • I. MUDAWAR, A. H. HOWARD, and C. O. GERSEY, “An Analytical Model for Near-Saturated Pool Boiling Critical Heat Flux on Vertical Surfaces,” Int. J. Heat Mass Transfer, 40, 2327 (1997).
  • M. J. BRUSSTAR and H. MERTE, “Effects of Heater Surface Orientation on the Critical Heat Flux—II. A Model for Pool and Forced Convection Subcooled Boiling,” Int. J. Heat Mass Transfer, 40, 4021 (1997).
  • Y. KATTO and S. YOKOYA, “Principal Mechanism for Boiling Crisis in Pool Boiling,” Int. J. Heat Mass Transfer, 11, 993 (1968).
  • M. K. JENSEN, P. E. COOPER, and A. E. BERGLES, “Boiling Heat Transfer and Dryout in Restricted Annular Geometries,” AIChE Reprint ERI-76284, American Institute of Chemical Engineers (1976).
  • G. F. SMIRNOV, A. L. KOBA, B. A. AFANASYEV, and V. V. ZRODNIKOV, “Heat Transfer in Boiling in Narrow Channels, Capillaries and Under Other Constraints,” Heat Transfer — Sov. Res., 8, 4 (1976).
  • S. AOKI, A. INOUE, M. ARITOMI, and Y. SAKAMOTO, “Experimental Study on the Boiling Phenomena Within a Narrow Gap,” Int. J. Heat Mass Transfer, 25, 985 (1982).
  • K. MISHIMA and H. NISHIHARA, “Effect of Channel Geometry on Critical Heat Flux for Low Pressure Water,” Int. J. Heat Mass Transfer, 30, 1169 (1987).
  • Y. KATTO and T. HIRAO, “Critical Heat Flux of CounterFlow Boiling in a Uniformly Heated Vertical Tube with a Closed Bottom,” Int. J. Heat Mass Transfer, 34, 993 (1991).
  • Y. SUDO and M. KAMINAGA, “A New CHF Correlation Scheme Proposed for Vertical Rectangular Channels Heated from Both Sides in Nuclear Research Reactors,” J. Heat Transfer, 115, 426 (1993).
  • J. BONJOUR and M. LALLEMAND, “Effects of Confinement and Pressure on Critical Heat Flux During Natural Convective Boiling in Vertical Channels,” Int. Commun. HeatMass Transfer, 24, 191 (1997).
  • M. MONDE, Y. MITSUTAKE, and M. HAYASI, “Critical Heat Flux During Natural Circulation Boiling on Uniformly Heated Outer Tube in Vertical Annular Tubes Submerged in Saturated Liquid (Change in Critical Heat Flux Characteristics Due to Heated Equivalent Diameter),” Int. J. HeatMass Transfer, 42, 3189 (1999).
  • H. OGATA et al., “Boiling Heat Transfer of Liquid Helium in Long Narrow Channels,” Cryog. Eng., 4, 219 (1969) (in Japanese).
  • C. XIA, W. HU, and Z. GUO, “Natural Convective Boiling in Vertical Rectangular Narrow Channels,” Exp. Thermal Fluid Sci., 12, 313 (1996).
  • S. S. KUTATELADZE, “Heat Transfer in Condensation and Boiling,” AEC-TR-3770, U.S. Atomic Energy Commission (1952).
  • J. H. LIENHARD, V. K. DHIR, and D. M. RIHERD, “Peak Pool Boiling Heat Flux Measurements on Finite Horizontal Flat Plates,” J. Heat Transfer, 95, 477 (1973).
  • Y. FUJITA, H. OHTA, and S. UCHIDA, “Nucleate Boiling Heat Transfer and Critical Heat Flux in Narrow Space Between Rectangular Surfaces,” Int. J. Heat Mass Transfer, 31, 229 (1988).
  • Y. H. KIM and K. Y. SUH, “Maximum Boiling Heat Transfer in Two-Dimensional Slice Narrow Gap with DownwardFacing Heating,” Proc. 2nd Int. Conf. Heat Transfer, Fluid Mechanics, and Thermodynamics (HEFAT), Victoria Falls, Zambia, June 23-26, 2003.
  • C. S. KIM and K. Y. SUH, “Sensitivity Studies on Thermal Margin of Reactor Vessel Lower Head During a Core Melt Accident,” J. Korean Nucl. Soc., 32, 376 (2000).
  • Y. H. KIM and K. Y. SUH, “Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head,” J. Korean Nucl. Soc., 32, 392 (2000).
  • H. J. YOON and K. Y. SUH, “Two Dimensional Analysis for the External Vessel Cooling Experiment,” J. Korean Nucl. Soc., 32, 407 (2000).
  • J. S. CHO, K. Y. SUH, C. H. CHUNG, R. J. PARK, and S. B. KIM, “The Effect of Coolant Boiling on the Molten Metal Pool Heat Transfer with Local Solidification,” J. Korean Nucl. Soc., 32, 34 (2000).
  • J. S. CHO, K. Y. SUH, C. H. CHUNG, R. J. PARK, and S. B. KIM, “Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water,” Nucl. Technol., 148, 313 (2004).
  • J. I. YUN, K. Y. SUH, and C. S. KANG, “Heat and Fission Product Transport in Molten Core Material with Crust,” Nucl. Eng. Des., 235, 2171 (2005).
  • K. H. KANG, R. J. PARK, S. B. KIM, K. Y. SUH, F. B. CHEUNG, and J. L. REMPE, “Simulant Melt Experiments on Thermal and Metallurgical Performance of the In-Vessel Core Catcher,” Nucl. Technol., 153, 208 (2006).
  • C. S. KIM, K. Y. SUH, G. C. PARK, U. C. LEE, and H. J. YOON, “Film Boiling Heat Transfer from Relatively Large Diameter Downward-Facing Hemispheres,” J. Korean Nucl. Soc., 35, 274 (2003).
  • C. S. KIM, K. Y. SUH, J. L. REMPE, F. B. CHEUNG, and S. B. KIM, “Effect of Interfacial Wavy Motion on Film Boiling Heat Transfer from Isothermal Downward-Facing Hemispheres,” Nucl. Eng. Des., 235, 2141 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.