28
Views
8
CrossRef citations to date
0
Altmetric
Technical Paper

Advances in the Subcritical, Gas-Cooled, Fast Transmutation Reactor Concept

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Pages 72-105 | Published online: 10 Apr 2017

References

  • W. M. STACEY et al., “A Fusion Transmutation of Waste Reactor,” Fusion Sci. Technol., 41, 116 (2002).
  • A. N. MAUER, W. M. STACEY, J. MANDREKAS, and E. A. HOFFMAN, “A Superconducting Tokamak Fusion Transmutation of Waste Reactor,” Fusion Sci. Technol., 45, 55 (2004).
  • W. M. STACEY et al., “A Subcritical, Helium Cooled, Fast Reactor for the Transmutation of Spent Nuclear Fuel,” Nucl. Technol., 156, 99 (2006).
  • W. M. STACEY et al., “A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source,” Nucl. Technol., 150, 162 (2005).
  • W. M. STACEY, J. MANDREKAS, and E. A. HOFFMAN, “Sub-Critical Transmutation Reactors with Tokamak Fusion Neutron Sources,” Fusion Sci. Technol., 47, 1210 (2005).
  • E. A. HOFFMAN and W. M. STACEY, “Comparative Fuel Cycle Analysis of Critical and Subcritical Fast Reactor Transmutation Systems,” Nucl. Technol., 144, 83 (2003).
  • J. W. MADDOX and W. M. STACEY, “Fuel Cycle Analysis of a Subcritical, Fast, He-Cooled Transmutation Reactor with a Fusion Neutron Source,” Nucl. Technol. (to be published).
  • ITER Web site; available on the Internet at http://iter.org.
  • LONG et al., “Fabrication of ORNL Fuel Irradiated in the Peachbottom Reactor and Post-Irradiation Examination of the Recycle Test Elements 7 and 4,” Oak Ridge National Laboratory (Oct. 1974).
  • D. A. PETTI et al., “Key Differences in the Fabrication, Irradiation and High Temperature Accident Testing of U. S. and German TRISO-Coated Particle Fuel, and Their Implications on Fuel Performance,” Nucl. Eng. Des., 222, 281 (2003).
  • B. KADOMTSEV et al., “USSR Contribution to the Phase IIA INTOR Workshop,” Vol. 2, p. VIII–64 (1982).
  • M. SAWAN, University of Wisconsin, Personal Communication (2004).
  • “Fuel Performance and Fission Product Behavior in Gas Cooled Reactors,” IAEA-TECDOC-978, International Atomic Energy Agency (1997).
  • W. VAN ROOJEN, “Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Reactor,” PhD Thesis, Delft University of Technology (2006).
  • K. MILLER et al. “Consideration of the Effects of Partial Debonding of the IPyC and Particle Asphericity on TRISO-Coated Fuel Behavior,” J. Nuc. Mater., 334, 79 (2004).
  • I. C. GAULD, O. W. HERMANN, and R. M. WESTFALL, “ORIGEN-S: SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms,” NUREG/CR-0200, Revision 7, Volume II, Section F7 (ORNL/NUREG/CSD-2/V2/R7) U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (2004).
  • M. ZHOU, Georgia Institute of Technology, Personal Communication (2006).
  • J. T. BUSBY, Oak Ridge National Laboratory, Personal Communication (2006).
  • S. T. NOZAWA et al., “Determining the Shear Properties of the PyC/SiC Interface for a Model TRISO Fuel,” J. Nucl. Mater., 350, 182 (2006).
  • T. YOSHITAKE et al., “Ring-Tensile Properties of Irradiated Oxide Dispersion Strengthened Ferritic/Martensitic Steel Claddings,” J. Nucl. Mater., 344, 329 (2004).
  • S. UKAI and M. FUJIWARA, “Perspective of ODS Alloys Application in Nuclear Environments,” J. Nucl. Mater., 307, 749 (2004).
  • S. UKAI et al., “R&D of Oxide Dispersion Strengthened Ferritic Martensitic Steels for FBR,” J. Nucl. Mater., 258, 1745 (1998).
  • S. ZINKLE, “Advanced Materials for Fusion Technology,” presented at 23rd Symp. Fusion Technology, Venice, Italy, September 20–24, 2004.
  • R. JONES, “SiCf/SiC Composites for Advanced Nuclear Applications,” Ceramic Engineering and Science Proc., Vol. 24: Proc. 27th Annual Conf. and Exposition Advanced Ceramics and Composites, Cocoa Beach, Florida, January 26–31, 2003, p. 261, American Ceramic Society (2003).
  • “NIST Property Data Summary for Silicon Carbid (SiC),” National Institute of Standards and Technology; available on the Internet at http://www.ceramics.nist.gov/srd/summary/ftgsic.htm (Feb. 2001).
  • J. BOTTCHER, S. UKAI, and M. INOUE, “ODS Steel Clad Mox Fuel-Pin Fabrication and Irradiation Performance in EBR-II,” Nucl. Technol., 138, 238 (2002).
  • H. BAIRIOT and G. VANHELLEMONT, “Production of Thorium and Plutonium-Diluted Sol-Gel Particles,” Sol-Gel Processes for Ceramic Nuclear Fuels, Proc. Panel on Sol-Gel Processes for Ceramic Nuclear Fuels, Vienna, Austria, May 6–10, 1968, International Atomic Energy Agency (1968).
  • R. G. WYMER, “Laboratory and Engineering Studies of Sol-Gel Processes at Oak Ridge National Laboratory,” Sol-Gel Processes for Ceramic Nuclear Fuels, Proc. Panel on Sol-Gel Processes for Ceramic Nuclear Fuels, Vienna, Austria, May 6–10, 1968, International Atomic Energy Agency (1968).
  • W. J. LACKEY and T. L. STARR, “Fabrication of Fiber Reinforced Ceramic Composites by Chemical Vapor Infiltration: Processing, Structure and Properties,” Fiber Reinforced Ceramic Composites, K. S. MAZDIYASNI, Ed., Noyes Publications, Park Ridge, New Jersey (1990).
  • D. TEDDER and R. HOROWITZ, “Concepts in Waste Management: Decontamination of Plutonium-Bearing Mixed Wastes with Efficient Water and Acid Recycle,” Sep. Sci. Technol., 38, 12 (2003).
  • D. W. TEDDER and E. P. HOROWITZ, “Efficient Strategies for Partitioning Actinides from Alkaline Wastes,” Ind. Engr. Chem. Res.,44, 3, 606 (2005).
  • T. TAN et al., “Simulation and Analysis for Melt Casting A Metallic Fuel Pin Incorporating Volatile Actinides,” Proc. ASME Int. Mechanical Engineering Congress and Exposition, Washington, D.C., November 16–21, 2003, American Society of Mechanical Engineers (2003).
  • “Actinide Separation Chemistry in Nuclear Waste Streams and Materials,” NEA/NSC/DOC (97) 19, Organization for Economic Cooperation and Development/Nuclear Energy Agency (1997).
  • E. ZIMMER and C. GANGULY, “Reprocessing and Refabrication of Thorium-Based Fuels,” I nstitut für chemische Technologie der nuklearen Entsorgung, Kernforschungsanlage Jülich GmbH; available on the Internet at http://www.iaea.org/inis/aws/fnss/fulltext/0412_8.pdf (2005).
  • G. VANDEGRIFT et al., “Lab-Scale Demonstration of the UREX+ Process,” presented at Waste Management Conference, Tucson, Arizona, February 29-March 4, 2004.
  • J. LAW et al., “Development and Demonstration of Solvent Extraction Processes for the Separation of Radionuclides from Acidic Radioactive Waste” Waste Management, 19, 27 (1999).
  • M. OZAWA et al., “A New Reprocessing System Composed of PUREX and TRUEX Processes for Total Separation of Long-Lived Radionuclides,” Proc. Fifth OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Mol, Belgium; November 25–27, 1998, SCK-CEN (1998).
  • C. DE OLIVEIRAand A. GODDARD, “EVENT-AMultidimensional Finite Element-Spherical Harmonics Radiation Transport Code,” Proc. Int. Seminar 3-D Deterministic Radiation Transport Codes, Paris, France, December 2–3, 1996, Organization for Economic Cooperation and Development (1996).
  • “MCNP-A General Monte Carlo N-Particle Transport Code, Version 5,” J. F. BRIESMEISTER, Ed., Los Alamos National Laboratory (2003).
  • “KENO V.a: An Improved Monte Carlo Criticality Program,” NUREG/CR-0200, Rev. 7, Vol. II, Section F11, ORNL/NUREG/CSD-2/R7, U.S. Nuclear Regulatory Commission (2004).
  • TRANSX 2”; available on the Internet at http://t2.lanl.gov/codes/html.
  • W. M. STACEY, Nuclear Reactor Physics, Chap. 2, Wiley-Interscience, New York (2001).
  • W. M. STACEY, Fusion, Chap. 10, Wiley-Interscience, New York (1984).
  • M. KAMBE and M. UOTANI, “Design and Development of Fast Breeder Reactor Passive Reactivity Control Systems: LEM and LIM,” Nucl. Technol., 122, 179 (1998).
  • M. S. KAZIMI and N. E. TODREAS, Nuclear Systems I: Thermal Hydraulics Fundamentals, pp. 295–338, Hemisphere Publishing Corporation, New York (1990).
  • M. J. MORAN and H. N. SHAPIRO, Fundamentals of Engineering Thermodynamics, 4th ed., pp. 441-467, John Wiley & Sons, Inc, New York (2000).
  • E. TEUGHERT, K. HAAS, A. VAN HEEK, and P. KASTEN, “Distribution of the Decay Heat in Various Modular HTRs and Influence on Peak Fuel Temperatures,” presented at Energy Conversion Engineering Conference, Philadelphia, Pennsylvania, August 10–14, 1987.
  • M. S. KAZIMI and N. E. TODREAS, Nuclear Systems I: Thermal Hydraulics Fundamentals, pp. 16–17, 417, 684-685, Hemisphere Publishing Corporation, New York (1990).
  • W. M. STACEY, Fusion Plasma Physics, Chap. 19, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2005).
  • J. SCHLOSSER et al., Nucl. Fusion, 45, 512 (2005).
  • “ITER Technical Basis,” Section 2.4, “Divertor,” International Atomic Energy Agency (2001).
  • “Computational Fluid Dynamics,” Fluent/Gambit, Version 6.1.22/s.1.2, Fluent Inc. (2004).
  • C. B. BAXI and C. P. C. WONG, “Review of Helium Cooling for Fusion Reactor Applications,” Fusion Eng. Des., 51-52, 319 (2000).
  • F. P. INCROPERA and D. P. DeWITT, Fundamentals of Heat and Mass Transfer, 5th ed., Chap. 8, John Wiley & Sons, Hoboken, New Jersey (2002).
  • B. R. MUNSON, D. F. YOUNG, and T. H. OKIISHI, Fundamentals of Fluid Mechanics, 4th ed., Chap. 8, John Wiley & Sons, Hoboken, New Jersey (2002).
  • ITER Technical Basis, Chap. 2.5 Additional Heating and Current Drive, G A0 FDR 101-07-13 R1.0 (2001).
  • “Technical Parameters” Web Site http://www.iter.org/index.htm.
  • R. D. STAMBAUGH, “Future of Tokamak Facilities with a Burning Plasma Experiment,” presentation to National Academies Burning Plasma Assessment Committee, 008-03/RDS/RS, January 18, 2003.
  • Y. SAKAMOTO et al., “Stationary High Confinement Plasmas with Large Bootstrap Current Fraction in JT-60U,” EX/4-3.
  • ITER Technical Basis, Chapter 2.1 Magnets, G A0 FDR 1 01-07-13 R1.0 (2001).
  • M. HUGUET, “Key Engineering Features of the ITERFEAT Magnet System and Implications for the R&D Programme,” Nucl. Fusion, 41, 645 (2001).
  • “Triton: A Two-Dimensional Depletion Sequence for Characterization of Spent Nuclear Fuel,” NUREG/Cr-200, Rev. 7, Vol. I Section T1, ORNL/NUREG/CSD-2/R7 (2004).
  • N. F. LANDERS, L. M. PETRIE, and D. F. HOLLENBACH, “CSAS: Control Module for Enhanced Criticality Safety Analysis Sequences,” NUREG/CR-200, Rev. 7, Vol. 1 Section C4, ORNL/NUREG/CSD-2/V1/R7.
  • J. MANDREKAS, L. A. COTTTRILL, G. C. HAHN, and W. M. STACEY, “An Advanced Tokamak Neutron Source for a Fusion Transmutation of Waste Reactor,” Georgia Tech report GTFR-167 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.