43
Views
2
CrossRef citations to date
0
Altmetric
Technical Paper

Modeling a Porous Region for Natural Convection Heat Transfer and Experimental Validation in Slender Cylindrical Geometries

, &
Pages 375-390 | Published online: 20 Mar 2017

REFERENCES

  • D. Matzner, “PBMR Project Status and the Way Ahead,” Proc. 2nd Int. Topl. Mtg. HTR Technology, Beijing, China, September 2004.
  • J. Slabber, “Technical Description of the PBMR Demonstration Power Plant, PBMR-016956,” Rev. 4, Pebble Bed Modular Reactor (Pty) Ltd. (2006).
  • K. Vafai, Handbook of Porous Media, 2nd ed., Taylor & Francis, New York (2005).
  • D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed., Springer, New York (2006).
  • M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd ed., Springer-Verlag, New York (1995).
  • N. Wakao and S. Kaguei, Heat and Mass Transfer in Packed Beds, pp. 264–295, McGraw-Hill, New York (1982).
  • A. Shams et al., “Quasi-Direct Numerical Simulation of a Pebble Bed Configuration: Part 1: Flow (Velocity) Field Analysis,” Nucl. Eng. Des., 263, 473 (2013); http://dx.doi.org/10.1016/j.nucengdes.2012.06.016.
  • F. Augier, F. Idoux, and J. Y. Delenne, “Numerical Simulations of Transfer and Transport Properties Inside Packed Beds of Spherical Particles,” Chem. Eng. Sci., 65, 1055 (2010); http://dx.doi.org/10.1016/jxes.2009.09.059.
  • M. Nijemeisland and A. G. Dixon, “Comparisonof CFD Simulations to Experiment for Convective Heat Transfer in a Gas–Solid Fixed Bed,” Chem. Eng. J., 82, 231 (2001); http://dx.doi.org/10.1016/S1385-8947(00)00360-0.
  • CCM+ User Guide 7.02, Setting Material Properties Methods, p. 2463, CD-Adapco, Melville, New York (2013).
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Pearson Education Limited, United Kingdom (2007).
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York (1980).
  • H. Huang and J. Ayoub, “Applicability of the Forchheimer Equation for Non-Darcy Flow in Porous Media,” SPE J., 13, 112 (2008); http://dx.doi.org/10.2118/102715-PA.
  • S. Ergun, “Fluid Flow ThroughPacked Columns,” Chem. Eng. Prog., 48, 89 (1959).
  • O. O. Noah, J. F. Slabber, and J. P. Meyer, “Natural Convection Heat Transfer Phenomena in Packed Bed Systems,” Proc. Int. Mechanical Engineering Congress and Exposition, Montreal, Canada, 2014, ASME (2014).
  • S. P. Timoshenko and J. N. Goodie, Theory of Elasticity, Article 140, McGraw-Hill, New York (1970).
  • E. Achenbach, “Heat and Flow Characteristics of Packed Beds,” Exp. Thermal Fluid Sci., 10, 17 (1995); http://dx.doi.org/10.1016/0894-1777(94)00077-L.
  • N. Wakao, S. Kaguei, and T. Funazkri, “Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds,” Chem. Eng. Sci., 34, 325 (1978); http://dx.doi.org/10.1016/0009-2509(79)85064-2.
  • “Reactor Core Design of High-Temperature Gas-Cooled Reactors. Part 2: Heat Transfer in Spherical Fuel Elements,” KTA3102.2, Nuclear Safety Standards Commission (1983).
  • A. G. Dixon, M. A. Di Costanzo, and B.A. Soucy, “Fluid-Phase Radial Transport in Packed Beds of Low Tube-to-Particle Diameter Ratio,” Int. J. Heat Mass Transfer, 27, 1701 (1984); http://dx.doi.org/10.1016/0017-9310(84)90153-4.
  • D. J. Gunn, “Transfer of Heat or Mass to Particle in Fixed and Fluidised Beds,” Int. J. Heat Mass Transfer, 21, 467 (1978); http://dx.doi.org/10.1016/0017-9310(78)90080-7.
  • J. C. Chen and S. W. Churchill, “Radiant Heat Transfer in Packed Beds,” AIChE J., 9, 35 (1963); http://dx.doi.org/10.1002/aic.690090108.
  • J. H. Rosenfeld, J. E. Toth, and A. L. Phillips, “Emerging Applications for Porous Media Heat Exchangers,” Proc. Int. Conf. Porous Media and Their Applications in Science, Kona, Hawaii, 1996.
  • M. Suzuki et al., “A Study on the Coordination Number in a System of Randomly Packed, Uniform-Sized Spherical Particles,” Int. Chem. Eng., 21, 482 (1981).
  • K. Minato et al., “Release Behavior of Metallic Fission Products from HTGR Fuel Particles at 1600 to 1900°C,” J. Nucl. Mater., 202, 47 (1993); http://dx.doi.org/10.1016/0022-3115(93)90027-V.
  • H. Nickel et al., “Long Time Experience with the Development of HTR Fuel Elements in Germany,” Nucl. Eng. Des., 217, 141 (2002); http://dx.doi.org/10.1016/S0029-5493(02)00128-0.
  • M. Ishihara et al., “Principle Design and Data of Graphite Components,” Nucl. Eng. Des., 233, 1-3, 160 (2004); http://dx.doi.org/10.1016Zj.nucengdes.2004.08.012.
  • T. Iyokua et al., “Design of Core Components,” Nucl. Eng. Des., 233, 1-3, 71 (2004); http://dx.doi.org/10.1016/j.nucengdes.2004.07.012.
  • K. Kugeler, “HTR Technology, NUCI 878 EB Study Guide,” North West University, Potchefstroom, South Africa (2009).
  • A. Koster, H. D. Matzner, and D. R. Nicholsi, “PBMR Design for the Future,” Nucl. Eng. Des., 222, 231 (2003); http://dx.doi.org/10.1016/S0029-5493(03)00029-3.
  • O. O. Noah, J. F. Slabber, and J. P. Meyer, “Experimental Evaluation of Natural Convection Heat Transfer in Packed Beds Contained in Slender Cylindrical Geometries,” Proc. 5th Int. Conf. Applications of Porous Media, Cluj-Napoca, Romania, August 25–28, 2013, p. 301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.