79
Views
3
CrossRef citations to date
0
Altmetric
Patent Evaluation

Therapeutic vaccine comprising Mycobacterium HSP70

&
Pages 95-99 | Published online: 05 Jan 2009

Bibliography

  • Hartris NB, Barletta RG. Mycobacterium avium subsp. paratuberculosis in veterinary medicine. Clin Microbiol Rev 2001;14(3):489-512
  • Benedictus A, Mitchell RM, Linde-Widmann M, et al. Transmission parameters of Mycobacterium avium subspecies paratuberculosis infections in a dairy herd going through a control program. Prev Vet Med 2008;83(3-4):215-27
  • Rosseels V, Huygen K. Vaccination against paratuberculosis. Expert Rev Vaccines 2008;7(6):817-32
  • Kohler H, Gyra H, Zimmer K, et al. Immune reactions in cattle after immunization with a Mycobacterium paratuberculosis vaccine and implications for the diagnosis of M. paratuberculosis and M. bovis infections. J Vet Med B Infect Dis Vet Public Health 2001;48(3):185-95
  • Muskens J, van ZF, Eger A, Bakker D. Evaluation of the long-term immune response in cattle after vaccination against paratuberculosis in two Dutch dairy herds. Vet Microbiol 2002;86(3):269-78
  • Patterson CJ, LaVenture M, Hurley SS, Davis JP. Accidental self-inoculation with Mycobacterium paratuberculosis bacterin (Johne's bacterin) by veterinarians in Wisconsin. J Am Vet Med Assoc 1988;192(9):1197-9
  • Bardwell JC, Craig EA. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci USA 1984;81(3):848-52
  • Ellis RJ, van der Vies SM. Molecular chaperones. Annu Rev Biochem 1991;60:321-47
  • Young D, Lathigra R, Hendrix R, et al. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci USA 1988;85(12):4267-70
  • El-Zaatari FA, Naser SA, Engstrand L, et al. Nucleotide sequence analysis and seroreactivities of the 65K heat shock protein from Mycobacterium paratuberculosis. Clin Diagn Lab Immunol 1995;2(6):657-64
  • Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002;2:185-94
  • Vabulas RM, Ahmad-Nejad P, da Costa C, et al. Endocytosed HSP60s Use Toll-like Receptor 2 (TLR2) and TLR4 to Activate the Toll/Interleukin-1 Receptor Signaling Pathway in Innate Immune Cells. J Biol Chem 2001;276(33):31332-9
  • Wallin RPA, Lundqvist A, More SH, et al. Heat-shock proteins as activators of the innate immune system. Trends Immunol 2002;23(3):130-5
  • Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 2004;64(4):442-51
  • Lehner T, Bergmeier LA, Wang Y, et al. Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 2000;30(2):594-603
  • Letter to the editor. Results of a World Health Organization-sponsored workshop on monoclonal antibodies to Mycobacterium leprae. Infect Immun 1985;48(2):603-5
  • Engers HD, Houba V, Bennedsen J, et al. Results of a World Health Organization sponsored workshop to characterize antigens recognized by mycobacterium-specific monoclonal antibodies. Infect Immun 1986;51:718-20
  • Kaufmann SH, Vath U, Thole JE, et al. Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur J Immunol 1987;17(3):351-7
  • McKenzie KR, Adams E, Britton WJ, et al. Sequence and immunogenicity of the 70-kDa heat shock protein of Mycobacterium leprae. J Immunol 1991;147(1):312-9
  • Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000;6(4):435-42
  • Ottenhoff TH, Ab BK, Van Embden JD, et al. The recombinant 65-kD heat shock protein of Mycobacterium bovis Bacillus Calmette-Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med 1988;168(5):1947-52
  • Peetermans WE, Langermans JA, van der Hulst ME, et al. Murine peritoneal macrophages activated by the mycobacterial 65-kilodalton heat shock protein express enhanced microbicidal activity in vitro. Infect Immun 1993;61(3):868-75
  • Peetermans WE, Raats CJ, Langermans JA, van Furth R. Mycobacterial heat-shock protein 65 induces proinflammatory cytokines but does not activate human mononuclear phagocytes. Scand J Immunol 1994;39(6):613-7
  • Tascon RE, Colston MJ, Ragno S, et al. Vaccination against tuberculosis by DNA injection. Nat Med 1996;2(8):888-92
  • Lowrie DB, Silva CL, Colston MJ, et al. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 1997;15(8):834-8
  • Taylor JL, Ordway DJ, Troudt J, et al. Factors Associated with Severe Granulomatous Pneumonia in Mycobacterium tuberculosis-Infected Mice Vaccinated Therapeutically with hsp65 DNA. Infect Immun 2005;73(8):5189-93
  • Koets AP, Rutten VP, Hoek A, et al. Heat-shock protein-specific T-cell responses in various stages of bovine paratuberculosis. Vet Immunol Immunopathol 1999;70(1-2):105-15
  • Langelaar MF, Hope JC, Rutten VP, et al. Mycobacterium avium ssp. paratuberculosis recombinant heat shock protein 70 interaction with different bovine antigen-presenting cells. Scand J Immunol 2005;61(3):242-50
  • Koets A, Hoek A, Langelaar M, et al. Mycobacterial 70 kD heat-shock protein is an effective subunit vaccine against bovine paratuberculosis. Vaccine 2006;24(14):2550-9
  • Kotes A, Rutten V, van Eden W. Diagnosis and Treatment of Microbacterial Infections. US060275848; 2006
  • Kotes A, van Eden W. Diagnosis and Treatment of Mycobacterial infections. EP1510821A1; 1996
  • Speare P, Little M, Shank D. Detection and Identification of Mycobacteria. US5494796A1; 1996
  • Young R, Young D. Stress Proteins and the use therefore. US030073094; 2003
  • Lowrie D. Vaccine against Mycobacterial Infections. US026492145; 2002
  • Wu T, Hung C. HSP DNA Vaccines. US6734173; 2004
  • Sirvastava P. Using Heat Shock Proteins to increase Immune Response. US7132109; 2006
  • Li Z. Using heat Shock Proteins to improve the therapeutic benefit of a non-vaccine treatment modality. US6984389; 2006
  • Tobian AAR, Canaday DH, Harding CV. Bacterial Heat Shock Proteins Enhance Class II MHC Antigen Processing and Presentation of Chaperoned Peptides to CD4+ T Cells. J Immunol 2004;173(8):5130-7
  • Tobian AAR, Canaday DH, Boom WH, Harding CV. Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 2004;172(9):5277-86

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.