1,598
Views
17
CrossRef citations to date
0
Altmetric
Review

Therapies for coronaviruses. Part I of II – viral entry inhibitors

, MD
Pages 357-367 | Published online: 23 Feb 2009

Bibliography

  • Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 1997;142(3):629-33
  • Lau SK, Woo PC, Li KS, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 2005;102(39):14040-5
  • Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science (NY) 2005;310(5748):676-9
  • Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res 2008;133(1):74-87
  • Wang LF, Shi Z, Zhang S, et al. Review of bats and SARS. Emerg Infect Dis 2006;12(12):1834-40
  • Vijgen L, Keyaerts E, Moes E, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 2005;79(3):1595-604
  • Tong TR. In: Tabor E, editor, Emerging viruses in human populations: Elsevier; 2007;43-96
  • Peiris JS, Lai ST, Poon LL, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003;361(9366):1319-25
  • Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004;10(12 Suppl):S88-97
  • Peiris JS, Yuen KY, Osterhaus AD, Stohr K. The severe acute respiratory syndrome. N Engl J Med 2003;349(25):2431-41
  • Drosten C, Preiser W, Gunther S, et al. Severe acute respiratory syndrome: identification of the etiological agent. Trends Mol Med 2003;9(8):325-7
  • Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348(20):1953-66
  • Heymann DL. The international response to the outbreak of SARS in 2003. Philos Trans R Soc Lond B Biol Sci 2004;359(1447):1127-9
  • Chinese SMEC. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 2004;303(5664):1666-9
  • Hertzig T, Scandella E, Schelle B, et al. Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. J Gen Virol 2004;85(Pt 6):1717-25
  • Ge F, Luo Y, Liew PX, Hung E. Derivation of a novel SARS-coronavirus replicon cell line and its application for anti-SARS drug screening. Virology 2007;360(1):150-8
  • Holmes KV, Dveksler G, Gagneten S, et al. Coronavirus receptor specificity. Adv Exp Med Biol 1993;342:261-6
  • Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426(6965):450-4
  • Hofmann H, Pyrc K, van der Hoek L, et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA 2005;102(22):7988-93
  • Bosch BJ, Bartelink W, Rottier PJM. Cathepsin L Functionally Cleaves the Severe Acute Respiratory Syndrome Coronavirus Class I Fusion Protein Upstream of Rather than Adjacent to the Fusion Peptide. J Virol 2008;82(17):8887-90
  • De Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther 2006;4(2):291-302
  • Tong TR. SARS coronavirus anti-infectives. Recent patents Anti Infect Drug Discov 2006;1(3):297-308
  • Zhai S, Liu W, Yan B. Recent patents on treatment of severe acute respiratory syndrome (SARS). Recent patents Anti Infect Drug Discov 2007;2(1):1-10
  • Farzan MR, Li W, Moore MJ, inventors; The Brigham and Women's Hospital, Inc., assignee. Angiotensin-converting enzyme-2 as a receptor for the SARS coronavirus. US20050282154; 2005
  • Traunecker A, Luke W, Karjalainen K. Soluble CD4 molecules neutralize human immunodeficiency virus type 1. Nature 1988;331(6151):84-6
  • Deen KC, Mcdougal JS, Inacker R, et al. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 1988;331(6151):82-4
  • Fisher RA, Bertonis JM, Meier W, et al. HIV infection is blocked in vitro by recombinant soluble CD4. Nature 1988;331(6151):76-8
  • Byrn RA, Sekigawa I, Chamow SM, et al. Characterization of in vitro inhibition of human immunodeficiency virus by purified recombinant CD4. J Virol 1989;63(10):4370-5
  • Capon DJ, Chamow SM, Mordenti J, et al. Designing CD4 immunoadhesins for AIDS therapy. Nature 1989;337(6207):525-31
  • Traunecker A, Schneider J, Kiefer H, Karjalainen K. Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature 1989;339(6219):68-70
  • Jacobson JM, Lowy I, Fletcher CV, et al. Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 2000;182(1):326-9
  • Shearer WT, Israel RJ, Starr S, et al. Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 2000;182(6):1774-9
  • Maddon PJ, Beaudry GA, Inventors; Progenics Pharmaceuticals, Inc. (Tarrytown, NY), assignee. Uses of CD4-gamma2 and CD4-IgG2 chimeras. US6187748; 2001
  • Dimitrov DS. The secret life of ACE2 as a receptor for the SARS virus. Cell 2003;115(6):652-3
  • Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. Embo J 2005;24(8):1634-43
  • Huentelman MJ, Zubcevic J, Hernandez P, et al. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 2004;44(6):903-6
  • Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008;93(5):543-8
  • Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436(7047):112-6
  • Casadevall A, Scharff MD. Return to the past: the case for antibody-based therapies in infectious diseases. Clin Infect Dis 1995;21(1):150-61
  • Keller MA, Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 2000;13(4):602-14
  • Marasco WA, Sui J. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 2007;25(12):1421-34
  • Johnson S, Oliver C, Prince GA, et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis 1997;176(5):1215-24
  • Wu H, Pfarr DS, Losonsky GA, Kiener PA. Immunoprophylaxis of RSV infection: advancing from RSV-IGIV to palivizumab and motavizumab. Curr Top Microbiol Immunol 2008;317:103-23
  • Zhang MY, Choudhry V, Xiao X, Dimitrov DS. Human monoclonal antibodies to the S glycoprotein and related proteins as potential therapeutics for SARS. Curr Opin Mol Ther 2005;7(2):151-6
  • Wong VW, Dai D, Wu AK, Sung JJ. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J 2003;9(3):199-201
  • Yeh KM, Chiueh TS, Siu LK, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J Antimicrob Chemother 2005;56(5):919-22
  • Simmons G, Reeves JD, Rennekamp AJ, et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004;101(12):4240-5
  • Lanzavecchia A, Inventor. Human monoclonal antibodies. WO2004076677; 2004
  • Traggiai E, Becker S, Subbarao K, et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 2004;10(8):871-5
  • Duan J, Yan X, Guo X, et al. A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem Biophys Res Commun 2005;333(1):186-93
  • Sui J, Li W, Murakami A, et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA 2004;101(8):2536-41
  • Sui J, Li W, Roberts A, et al. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J Virol 2005;79(10):5900-6
  • Marasco WA, Inventor. Antibodiews against SARS-CoV and methods of use thereof. WO2007044695; 2007
  • van den Brink EN, Ter Meulen J, Cox F, et al. Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol 2005;79(3):1635-44
  • Ter Meulen JH, De Kruif CA, Van Den Brink EN, Goudsmit J, inventors; Crucell, assignee. Binding molecules against SARS-coronavirus and uses thereof. US20060121580; 2006
  • Ter Meulen JH, Van Den Brink EN, De Kruif CA, Goudsmit J, inventors; Compositions against SARS-coronavirus and uses thereof. US20080014204; 2008
  • Ter Meulen J, Bakker AB, van den Brink EN, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 2004;363(9427):2139-41
  • Ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS medicine 2006;3(7):e237
  • Greenough TC, Babcock GJ, Roberts A, et al. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis 2005;191(4):507-14
  • University of Massachusetts, assignee. SARS nucleic acids, proteins, antibodies, and uses thereof. WO2005047459; 2005
  • Ambrosino D, Hernandez H, Greenough T, et al, inventors; SARS nucleic acids, proteins, antibodies, and uses thereof. US20050069869; 2005
  • Roberts A, Thomas WD, Guarner J, et al. Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters. J Infect Dis 2006;193(5):685-92
  • Jiang S, He Y, inventors; Neutralizing monoclonal antibodies against severe acute respiratory syndrome-associated coronavirus. US20060240551; 2006
  • Jiang S, He Y, inventors; New York Blood Center, assignee. Neutralizing monoclonal antibodies against severe acute respiratory syndrome-associated coronavirus. WO2006086561; 2006
  • Coughlin M, Lou G, Martinez O, et al. Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology 2007;361(1):93-102
  • Yang ZY, Werner HC, Kong WP, et al. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci USA 2005;102(3):797-801
  • Corapi WV, Olsen CW, Scott FW. Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus. J Virol 1992;66(11):6695-705
  • Zhu Z, Chakraborti S, He Y, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci USA 2007;104(29):12123-8
  • Rupprecht CE, Hanlon CA, Hemachudha T. Rabies re-examined. Lancet Infect Dis 2002;2(6):327-43
  • Strand V, Kimberly R, Isaacs JD. Biologic therapies in rheumatology: lessons learned, future directions. Nat Rev Drug Discov 2007;6(1):75-92
  • Suter TM, Cook-bruns N, Barton C. Cardiotoxicity associated with trastuzumab (Herceptin) therapy in the treatment of metastatic breast cancer. Breast 2004;13(3):173-83
  • Menna P, Salvatorelli E, Minotti G. Cardiotoxicity of Antitumor Drugs. Chem Res Toxicol 2008;21(5):978-89
  • Zwick MB, Gach JS, Burton DR. A welcome burst of human antibodies. Nat Biotech 2008;26(8):886-7
  • Xu Y, Lou Z, Liu Y, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem 2004;279(47):49414-9
  • Sainz B Jr, Rausch JM, Gallaher WR, et al. Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. J Virol 2005;79(11):7195-206
  • Kliger Y, Levanon EY. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy. BMC Microbiol 2003;3(1):20
  • Bosch BJ, Martina BE, Van Der Zee R, et al. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci USA 2004;101(22):8455-60
  • Yuan K, Yi L, Chen J, et al. Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein. Biochem Biophys Res Commun 2004;319(3):746-52
  • Ni L, Zhu J, Zhang J, et al. Design of recombinant protein-based SARS-CoV entry inhibitors targeting the heptad-repeat regions of the spike protein S2 domain. Biochem Biophys Res Commun 2005;330(1):39-45
  • Erickson JW, Silva A, inventors; Sequoia Pharmaceuticals, Inc., assignee. Antiviral agents for the treatment, control and prevention of infections by coronaviruses. US7151163; 2006
  • Sainz B Jr, Mossel EC, Gallaher WR, et al. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Res 2006;120(1-2):146-55
  • Gallaher WR, Garry RF, inventors; Method of inhibiting human metapneumovirus and human coronavirus in the prevention and treatment of severe acute respiratory syndrome (SARS). US20040229219; 2004
  • Zheng BJ, Guan Y, Hez ML, et al. Synthetic peptides outside the spike protein heptad repeat regions as potent inhibitors of SARS-associated coronavirus. Antivir Ther 2005;10(3):393-403
  • Zheng B, Guan Y, Huang J, He ML, inventors; The University of Hong Kong, assignee. Synthetic peptide targeting critical sites on the SARS-associated coronavirus spike protein responsible for viral infection and method of use thereof. US20060110758; 2006
  • Bosch BJ, Rossen JW, Bartelink W, et al. Coronavirus escape from heptad repeat 2 (HR2)-derived peptide entry inhibition as a result of mutations in the HR1 domain of the spike fusion protein. J Virol 2008;82(5):2580-5
  • Labonte J, Lebbos J, Kirkpatrick P. Enfuvirtide. Nat Rev Drug Discov 2003;2(5):345-6
  • Kao RY, Tsui WH, Lee TS, et al. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem Biol 2004;11(9):1293-9
  • Riese RJ, Wolf PR, Bromme D, et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 1996;4(4):357-66
  • Kane SE, Gottesman MM. The role of cathepsin L in malignant transformation. Semin Cancer Biol 1990;1(2):127-36
  • Urbich C, Heeschen C, Aicher A, et al. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 2005;11(2):206-13
  • Ebert DH, Deussing J, Peters C, Dermody TS. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem 2002;277(27):24609-17
  • Chandran K, Sullivan NJ, Felbor U, et al. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science (NY) 2005;308(5728):1643-5
  • Simmons G, Gosalia DN, Rennekamp AJ, et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005;102(33):11876-81
  • Huang IC, Bosch BJ, Li F, et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 2006;281(6):3198-203
  • Diamond SL, Goaslia D, Simmons G, Bates P, inventors. SARS and Ebola inhibitors and use thereof, and methods for their discovery. US20070203073; 2007
  • Katunuma N, Murata E, Kakegawa H, et al. Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Lett 1999;458(1):6-10
  • Zhang T, Maekawa Y, Sakai T, et al. Treatment with cathepsin L inhibitor potentiates Th2-type immune response in Leishmania major-infected BALB/c mice. Int Immunol 2001;13(8):975-82
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1-3):3-26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.