1,161
Views
78
CrossRef citations to date
0
Altmetric
Reviews

Sirtuin inhibitors

&
Pages 283-294 | Published online: 27 Mar 2009

Bibliography

  • Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Rev 2008;9:206-18
  • Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996;272:408-11
  • Gray SG, Ekström TJ. The human histone deacetylase family. Exp Cell Res 2001;262:75-83
  • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007;404:1-13
  • Brittain D, Weinmann H, Ottow E. Recent advances in the medicinal chemistry of hystone deacetylase inhibitors. Ann Rep Med Chem 2007;42:337-48
  • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Comunn 2000;273:793-8
  • Voelter-Mahlknecht S, Mahlknecht U. Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int J Mol Med 2006;17:59-67
  • Voelter-Mahlknecht S, Ho AD, Mahlknecht U. FISH-mapping and genomic organization of the NAD-dependent histone deacetylase gene, Sirtuin 2 (Sirt2). Int J Oncol 2005;27:1187-96
  • Mahlknecht U, Ho AD, Letzel S, Voelter-Mahlknecht S. Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res 2006;112:208-12
  • Voelter-Mahlknecht S, Ho AD, Mahlknecht U. Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene. Int J Oncol 2006;28:447-56
  • Voelter-Mahlknecht S, Ho AD, Letzel S, Mahlknecht U. Fluorescence in situ hybridization and chromosomal organization of the human Sirtuin 7 gene. Int J Oncol 2006;28:899-908
  • Onyango P, Celic I, McCaffery JM, et al. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA 2002;99:13653-8
  • Vaziri H, Dessain SK, Eaton EN, et al. hSIR2SIRT1 functions as an NAD-Dependent p53 deacetylase. Cell 2001;107:149-59
  • Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006;20:1075-80
  • North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003;11:437-44
  • Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390-2
  • Crujeiras AB, Parra D, Goyenechea E, Martínez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest 2008;38:672-8
  • Schwer B, Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab 2008;7:104-12
  • Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007;6:505-14
  • Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008;22:1753-7
  • Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β-cells. PLoS Biol 2006;4:210-20
  • Lin SJ, Ford E, Haigis M, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 2004;18:12-6
  • Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007;2:277-90
  • Lim CS. SIRT1: tumor promoter or tumor suppressor? Med Hypotheses 2006;67:341-4
  • Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet 2007;238:413-8
  • Stünkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 2007;2:1360-8
  • Ford J, Ahmed S, Allison S, et al. JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle 2008;7:3091-7
  • Ashrafn N, Zino S, Macintyre A, et al. Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer 2006;95:1056-61
  • Sun Y, Sun D, Li F, et al. Downregulation of Sirt1 by antisense oligonucleotides induces apoptosis and enhances radiation sensitization in A549 lung cancer cells. Lung Cancer 2007;58:21-9
  • Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 2003;309:558-66
  • Vaquero A, Scher M, Lee D, et al. Human Sirt1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16:93-105
  • Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011-5
  • Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369-80
  • Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 2005;280:10264-76
  • Smith JS. Human Sir2 and the “silencing” p53 activity. Trends Cell Biol 2002;12:404-6
  • Bykov VJ, Selivanova G, Wiman KG. Small molecules that reactivate mutant p53. Eur J Cancer 2003;39:1828-34
  • Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771-6
  • Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1 α. J Biol Chem 2005;280:16456-60
  • Rodgers JT, Lerin C, Haas WG, et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 2005;434:113-8
  • Barzilai N, Banerjee S, Hawkins M, et al. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 1998;101:1353-61
  • Li W, Zhang B, Tang J, et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J Neurosci 2007;27:2606-16
  • Werner HB, Kuhlmann K, Shen S, et al. Proteolipid protein is required for transport of Sirtuin 2 into CNS myelin. J Neurosci 2007;27:7717-30
  • Suzuki K, Koike T. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neurosci 2007;147:599-612
  • Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science 2007;317:516-9
  • Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 2007;27:8807-14
  • Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Chem Biol 2005;280:13560-7
  • Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006;103:10230-5
  • Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins sirt3 and sirt5. J Mol Biol 2008;382:790-801
  • Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 2005;85:258-63
  • Rose G, Dato S, Altomare K, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol 2003;38:1065-70
  • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006;126:941-54
  • Nakamura Y, Ogura M, Tanaka D, Inagaki N. Localization of mouse mitochondrial SIRT proteins: shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun 2008;366:174-9
  • Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623-35
  • Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008;452:492-6
  • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005;280:21313-20
  • Finnin MS, Donigian JR, Pavletich NP. Structure of the histone deacetylase SIRT2. Nat Struct Biol 2001;8:621-5
  • Min J, Landry J, Sternglanz R, Xu RM. Crystal structure of a SIR2 homolog-NAD complex. Cell 2001;105:269-79
  • Avalos JL, Bever KM, Wolberger C. Structural basis for the mechanism and regulation of Sir2 enzymes. Mol Cell 2004;13:639-48
  • Chang JH, Kim HC, Hwang KY, et al. Structural basis for the NAD-dependent deacetylase mechanism of Sir2. J Biol Chem 2002;277:34489-98
  • Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci 2005;26:94-103
  • Denu JM. Vitamin B3 and sirtuin function. Trends Biochem Sci 2005;30:479-83
  • Khan AN, Lewis PN. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases. J Biol Chem 2006;281:11702-11
  • Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 2003;42:9249-56
  • Liou GG, Tanny JC, Kruger RG, et al. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 2005;121:515-27
  • Sanders BD, Zhao K, Slama JT, Marmorstein R. Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes. Mol Cell 2007;25:463-72
  • Sauve AA, Moir RD, Schramm VL, Willis IM. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell 2005;17:595-601
  • Adams JD Jr, Klaidman LK. Sirtuins, nicotinamide and aging: a critical review. Lett Drug Design Discov 2007;4:44-8
  • Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 2006;281:21745-54
  • Schuetz A, Min J, Antoshenko T, et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 2007;15:377-89
  • Trapp J, Meier R, Hongwiset D, et al. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem 2007;2:1419-31
  • Bedalov A, Gatbonton T, Irvine WP, et al. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 2001;98:15113-8
  • Hirao M, Posakony J, Nelson M, et al. Identification of selective inhibitors of NAD+-dependent deacetylases using phenotypic screens in yeast. J Biol Chem 2003;278:52773-82
  • Posakony J, Hirao M, Stevens S, et al. Inhibitors of Sir2: evaluation of splitomicin analogues. J Med Chem 2004;47:2635-44
  • Grozinger CM, Chao ED, Blackwell HE, et al. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 2001;276:38837-43
  • Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008;13:454-63
  • Heltweg B, Gatbonton T, Schuler AD, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res 2006;66:4368-77
  • Lara E, Calvanese V, Altucci L, et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 2009;28:781-91
  • Uciechowska U, Schemies J, Neugebauer RC, et al. Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing. ChemMedChem 2008;3:1965-76
  • Tervo AJ, Kyrylenko S, Niskanen P, et al. An in silico approach to discovering novel inhibitors of human sirtuin type 2. J Med Chem 2004;47:6292-8
  • Tervo AJ, Suuronen T, Kyrylenko S, et al. Discovering inhibitors of human sirtuin type 2: novel structural scaffolds. J Med Chem 2006;49:7239-41
  • Kiviranta PH, Leppänen J, Kyrylenko S, et al. N,N'-bisbenzylidenebenzene-1,4-diamines and N,N'-bisbenzyliden enaphthalene-1,4-diamines as sirtuin type 2 (SIRT2) inhibitors. J Med Chem 2006;49:7907-11
  • Kiviranta PH, Leppänen J, Rinne VM, et al. N-(3-(4-Hydroxyphenyl)-propenoyl)-amino acid tryptamides as SIRT2 inhibitors. Bioorg Med Chem Lett 2007;17:2448-51
  • Neugebauer RC, Uchiechowska U, Meier R, et al. Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem 2008;51:1203-13
  • Hutchinson Fred Cancer Res (US) WO03046207; 2003
  • Biacsi R, Kumari D, Usdin K. SIRT1 inhibition alleviates gene silencing in Fragile X mental retardation syndrome. PLoS Genet 2008;4:e1000017
  • Pagans S, Pedal A, North BJ, et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol 2005;3:e41
  • Ott Melanie (US);Verdin Eric M (US); US2005287597; 2005
  • Mai A, Massa S, Lavu S, et al. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J Med Chem 2005;48:7789-95
  • Harvard College (US); WO2007084162; 2007
  • Ota H, Tokunaga E, Chang K, et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 2006;25:176-85
  • Kojima K, Ohhashi R, Fujita Y, et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun 2008;373:423-8
  • Liu FC, Day YJ, Liou JT, et al. Sirtinol attenuates hepatic injury and pro-inflammatory cytokine production following trauma-hemorrhage in male Sprague-Dawley rats. Acta Anaesthesiol Scand 2008;52:635-40
  • Catoire H, Pasco MY, Abu-Baker A, et al. Sirtuin inhibition protects from the polyalanine muscular dystrophy protein PABPN1. Hum Mol Genet 2008;17:2108-17
  • Vergnes B, Vanhille L, Ouaissi A, Sereno D. Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase. Acta Trop 2005;94:107-15
  • Sereno D and Vergnes B; US2008039430; 2008
  • Foldrx Pharmaceuticals Inc (US) and Whitehead Biomedical Inst (US); WO2007126841; 2007
  • Whitehead Biomedical Inst (US); Foldrx Pharmaceuticals Inc (US) BRPI0515549; 2008
  • Whitehead Biomedical Inst (US); Foldrx Pharmaceuticals Inc (US), WO2006034003; 2006
  • Perabo FG, Müller SC. New agents in intravesical chemotherapy of superficial bladder cancer. Scand J Urol Nephrol 2005;39:108-116
  • Peltier AC, Russell JW. Recent advances in drug-induced neuropathies. Curr Opin Neurol 2002;15:633-8
  • Gagliardi AR, Taylor MF, Collins DC. Uptake of suramin by human microvascular endothelial cells. Cancer Lett 1998;125:97-102

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.