445
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Patents related to therapeutic activation of KATP and K2P potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics

, PhD &
Pages 433-460 | Published online: 13 Apr 2009

Bibliography

  • Alexander SPH, Mathie A, Peters JA. Guide to receptors and channels (GRAC). Third edition. Br J Pharmacol 2008;153(Suppl 2):S1-S209
  • Judge SIV, Smith PJ, Stewart PE, Bever CT. Potassium channel blockers and openers as CNS neurologic therapeutic agents. Rec Patents CNS Drug Discov 2007;2:200-28
  • Judge SIV, Bever CT Jr. Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 2006;111:224-59
  • Gutman GA, Chandy KG, Grissmer S, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 2005;57:473-508
  • Wei AD, Gutman GA, Aldrich R, et al. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 2005;57:463-72
  • Kubo Y, Adelman JP, Clapham DE, Jan LY. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 2005;57:509-26
  • Goldstein SAN, Bayliss DA, Kim D, et al. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 2005;57:527-40
  • Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983;305(5930):147-8
  • Kakei M, Noma A, Shibasaki T. Properties of adenosine-triphosphate-regulated potassium channels. J Physiol (Lond) 1985;363:441-62
  • Noma A, Shibasaki T. Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol (Lond) 1985;363:441-62
  • Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic beta-cells. Nature 1984;311(5983):271-3
  • Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 1984;312(5993):446-8
  • Rorsman P, Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflügers Arch 1985;405(4):305-9
  • Ashford ML, Sturgess NC, Trout NJ, et al. Adenosine-5'-triphosphate-sendsitive ion channels in neonatal rat cultured central neurones. Pflügers Arch 1988;412(3):297-304
  • Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science 1990;247(4944):852-4
  • Moreau C, Prost AL, Dérand R, Vivaudou M. SUR, ABC proteins targeted by KATP channel openers. J Mol Cell Cardiol 2005;38(6):951-63
  • Sturgess NC, Ashford ML, Cook DL, Hales CN. The suphonylurea receptor may be an ATP-sensitive potassium channels. Lancet 1985;2(8453):474-5
  • Sturgess NC, Kozlowski RZ, Carrington CA, et al. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol 1988;95(1):83-94
  • Trube G, Rorsman P, Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beat-cells. Pflügers Arch 1986;407(5):493-9
  • Dunne MJ, Illot MC, Peterson OH. Interaction of diazoxide, tolbutamide and ATP4- on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membr Biol 1987;99(3):215-24
  • Zhu HL, Luo WQ, Wang H. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels. Neuroscience 2008;157:884-94
  • Lapi D, Marchiafava PL, Colantuoni A. Pial microvascular responses to transienet bilateral common carotid artery occlusion: effects of hypertonic glycerol. J Vasc Res 2008;45(2):89-102
  • Sun XL, Zeng XZ, Zhou F, et al. KATP channel openers facilitate glutamate uptake by GluTs in rat primary cultured astrocytes. Neuropharmacology 2008;33(6):1336-42
  • Jiang KW, Yu ZS, Shui QX, Xia ZZ. Activation of ATP-sensitive potassium channels prevents the cleavage of cytosolic μ-ccalpain and abrogates the elevation of nuclear c-Fos and c-Jun expressions after hypoxic-ischemia in neonatal rat brain. Mol Brain Res 2005;133(1):87-94
  • Yuan HB, Huang Y, Zheng S, Zuo Z. Hypothermic preconditioning increases survival of Purkinje neurons in rat cerebellar slices after an in vitro simulated ischemia. Anesthesiology 2004;100(2):331-7
  • Kis BK, Rajapakse NC, Snipes JA, et al. Diazoxide induces delayed pre-conditioning in cultures rat cortical neurons. J Neurochem 2003;87(4):969-80
  • Garcia De Arriba S, Franke H, Pissarek M, et al. Neuroprotection by ATP-dependent potassium channels in rat neocortical brain slices during hypoxia. Neurosci Let 1999;273(1):13-6
  • Riepe MW, Esclaire F, Kasischke K, et al. Increased hypotoxic tolerance by chemical inhibition of oxidative phosphorylation: ‘chemical preconditioning’. J Cereb Blood Flow Metab 1997;17(3):257-64
  • Pamenter ME, Shin D SH, Cooray M, Buck LT. Mitochondrial ATP-sensitive K+ channels regulate NMDAR activity in the cortex of the anoxic western painted turtle. J Physiol (Lond) 2008;586(4):1043-58
  • Raval AP, Dave KR, DeFrazio RA, Perez-Pinzon MA. EpsilonPKC phosphorylates the mitochondrial K+ATP channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res 2007;1184:345-53
  • Sun HS, Feng ZP, Miki T, et al. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophyiol 2005;95(4):2590-601
  • Kawamura T, Kadosaki M, Nara N, et al. Nicorandil attenuates NF-κB activation, adhesion molecule expression, and cytokine production in patients with coronary artery bypass surgery. Shock 2005;24(2):103-8
  • Konstantinov IE, Cheung MM, Shimizu M, et al. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a Katp channel-dependent mechanism. Transplantation 2005;79(12):1691-5
  • Kehl F, Payne RS, Toewer N, Schurr A. Seveflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res 2004;1021(1):76-81
  • Bancila V, Nikonenko I, Dunant Y, et al. Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J Neurochem 2004;90(5):1243-50
  • Won R, Lim JY, Lee SY, et al. Neuroprotective effect of KR-31378 via KATP channel opening against ischemic insult. Biol Pharm Bull 2004;27(8):1285-8
  • Raupach T, Ballanyi K. Intracellular pH and KATP channel activity in dorsal vagal neurons of juvenile rats in situ during metabolic disturbances. Brain Res 2004;1017(1-2):137-45
  • Yoshida M, Nakakimura K, Cui YJ, et al. Adenosine A(1) receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2004;24(7):771-9
  • D'Souza SP, Yellon DM, Martin C, et al. B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol Heart Circ Physiol 2003;284(5):H1592-600
  • Caparrekku DJ, Cattaneao SM 2nd, Sethea BT, et al. Pharmacological preconditioning ameliorates neurological injury in a model of spinal cord ischemia. Ann Thorac Surg 2002;74(3):838-44
  • Janigro D, Ngyyen TS, Meno J, et al. Endothelium-dependent regulation of cerebrovascular tone by extracellular and intracellular ATP. Am J Physiol 1997;273(2 Pt 2):H878-85
  • Nishimura M, Takahashi H, Nanbu A, et al. Cerebral adenosine triphosphate-sensitive K+ channels may be impaired during acute cerebral ischemia in spontaneously hypertensive rats. J Auton Nerv Syst 1996;58(3):139-46
  • Xie Y, Zacharias E, Hoff P, Tegtmeier F. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain. J Cereb Blood Flow Metab 1995;15(4):587-94
  • Nishimura M, Nanbu A, Sakamoto M, et al. Role of cerebral ATP-sensitive K+ channels in arterial pressure regulation during acute cerebral ischaemia in SHR and WKY rats. Clin Exp Pharmacol Physiol Suppl 1995;22(1):S70-2
  • Xue J, Zhou D, Yao H, et al. Role of transporters and ion channels in neuronal injury under hypoxia. Am J Physiol Regul Integr Comp Physiol 2007;294(2):R451-7
  • Thompson JW, Prentice HM, Lutz PL. Regulation of extracellular glutamate levels in the long-term anoxic turtle striatum: coordinated activity of glutamate transporters, adenosine, K+ATP channels and GABA. J Biomed Sci 2007;14(6):809-17
  • Huang L, Li W, Li B, Zou F. Activation of ATP-sensitive K channels protects hippocampal CA1 neurons from hypoxia by suppressing p53 expression. Neurosci Lett 2206;398(1-2):34-8
  • Moon CH, Kim MY, Kim MJ, et al. KR-31378, a novel benzopyran analog, attenuates hypoxia-induced cell death via mitochondrial KATP channel and protein kinase C-epsilon in heart-derived H9c2 cells. Eur J Pharmacol 2004;506(1):27-35
  • Müller M, Brockhaus J, Ballanyi K. ATP-independent anoxic activation of ATP-sensitive K+ channels in dorsal vagal neurons of juvenile mice in situ. Neuroscience 2002;109(2):313-28
  • Gyte A, Pritchard LE, Jones HB, et al. Reduced expression of the KATP channel subunit, Kir6.2, is associated with decreased expression of neuropeptide Y and agouti-related protein in the hypothalami of Zucker diabetic fatty acids. J Neuroendocrinol 2007;19(12):941-51
  • Miki T, Liss B, Minami K, et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose metabolism. Nat Neurosci 2001;4(5):507-12
  • Spanswick D, Smith MA, Mirshamsi S, et al. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 2000;3(8):757-8
  • Dunn-Meynell AA, Rawson NE, Levin BE. Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 1998;814(1-2):41-54
  • O'Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 2004;94:420-32
  • Hanley PJ, Daut J. KATP channels and preconditioning: a re-examination of the role of mitochondrial KATP channels an overview of alternative mechanisms. J Mol Cell Cardiol 2005;39:17-50
  • Mannhold R. KATP channel openers: structure-activity relationships and therapeutic potential. Med Res Rev 2004;24(2):213-66
  • Simard JM, Chen M. Regulation by sulfanylurea receptor type 1 of a non-selective cation channel involved in cytotoxic edema of reactive astrocytes. J Neurosurg Anesthesiol 2004;16(1):98-9
  • Simard JM, Woo SK, Bhatta S, Gerzanich V. Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr Opin Pharmacol 2008;8(1):42-9
  • Zeng J, Wang G, Chen SD. ATP-sensitive potassium channels: novel potential roles in Parkinson's disease. Neurosci Bull 2007;23(6):106-21
  • Wang L, Traystman RJ, Murphy SJ. Inhalation anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 2008;8(1):104-10
  • Clarkson AN. Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci 2007;80:1157-75
  • Yamada K, Inagaki N. Neuroprotection by KATP channels. J Mol Cell Cardiol 2005;38(6):945-9
  • Phillis JW. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels. Crit Rev Neurobiol 2004;16(4):237-70
  • Burdakov D, Luckman DM, Verkhratsk A. Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 2005;360(1464):2227-35
  • Miki T, Seino S. Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol 2005;38(6):917-25
  • Minami K, Miki T, Kadowaki T, Seino S. Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice. Diabetes 2004;53(Suppl 3):S176-80
  • Avshalumov MV, Bao L, Patel JC, Rice ME. H2O2 signaling in the nigrostriatal dopamine pathway via ATP-sensitive potassium channels: issues and answers. Antioxid Redox Signal 2007;9(2):219-31
  • Sattiraju S, Reyes S, Kane GC, Terzic A. KATP channel pharmacogenomics: from bench to bedside. Clin Pharmacol Ther 2008;83(2):354-7
  • Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 2006;440(7083):470-6
  • Matsuo M, Kimura Y, Ueda K. KATP channel interaction with adenine nucleotides. J Mol Cell Cardiol 2005;38(6):907-16
  • Ballanyi K. Protective role of neuronal KATP channels in brain hypoxia. J Exp Biol 2004;207(Pt 18):3201-12
  • Lange M, Morelli A, Westphal M. Inhibition of potassium channels in critical illness. Curr Opin Anesthesiol 2008;21:105-10
  • Lange M, Morelli A, Ertmer C, et al. Role of adenosine triphosphate-sensitive potassium channel inhibition in shock states: physiology and clinical implications. Shock 2007;28(4):394-400
  • Zünkler BJ. Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther 2006;112(1):12-37
  • Seino S, Miki T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog Biophys Mol Biol 2003;81:133-76
  • Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 1997;77(4):1165-232
  • Lesage F, Guillemare E, Fink M, et al. TWIK-1, ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 1996;15(5):1004-11
  • Lesage F, Reyes R, Fink M, et al. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J 1996;15(23):6400-7
  • Fink M, Duprat F, Lesage F, et al. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 1996;15(24):6854-62
  • Duprat F, Lesage F, Fink M, et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 1997;16(17):5464-71
  • Ketchum KA, Joiner WJ, Sellers AJ, et al. A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 1995;376:690-5
  • Zhou XL, Vaillant B, Loukin SH, et al. YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast. FEBS Lett 1995;373:170-6
  • Lesage F, Guillemare E, Fink M, et al. A pH-sensitive yeast outward rectifier K+ channels with two pore domains and novel gating properties. J Biol Chem 1996;271(8):4183-7
  • Fink M, Lesage F, Duprat F, et al. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 1998;17(12):3297-308
  • Lesage F, Lauritzen I, Duprat F, et al. The structure and distribution of the mouse TWIK-1 K+ channel. FEBS Lett 1997;402(1):28-32
  • Aller MI, Wisden W. Changes in expression of some two-pore domain potassium channel genes (KNCK) in selected brain regions of developing mice. Neurosci 2008;151:1154-72
  • Kim D, Clapham DE. Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 1989;244:1174-9
  • Rao VLR, Dhodda VK, Song G, et al. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 2003;71(2):208-19
  • Meuth SG, Kanyshkova T, Melzer N, et al. Altered neuronal expression if TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation. Neurosci Lett 2008;446:133-8
  • Kim D, Sladek CD, Aguando-Velasco C, et al. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol (Lond) 1995;484:643-60
  • Lauritzen I, Blondeau N, Heurteaux C, et al. Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 2000;19(8):1784-93
  • Plant LD, Kemp PJ, Peers C, et al. Hypoxia depolarization of cerebellar granule neurons by specific inhibition of TASK-1. Stroke 2002;33:2324-8
  • Miller P, Kemp PJ, Lewis A, et al. Acute hypoxia occludes hTREK-1 modulation: re-evaluation of the potential role of tandem P domain K+ channels in central neuroprotection. J Physiol (Lond) 2003;548(1):31-7
  • Miller P, Peers C, Kemp PJ. Polymodal regulation of hTREK1 by pH, arachidonic acid, and hypoxia: physiological impact in acidosis and alkalosis. Am J Physiol Cell Physiol 2004;286:C272-82
  • Xu X, Pan Y, Wang X. Alterations in the expression of lipid and mechano-gated two-pore domain potassium channel genes in rat brain following chronic cerebral ischemia. Brain Res Mol Brain Res 2004;120(2):205-9
  • Li ZB, Zhang HX, Li LL, Wang XL. Enhanced expressions of arachidonic acid-sensitive tandem-pore domain potassium channels in rat experimental acute cerebral ischemia. Biochem Biophys Res Commun 2005;327(4):1163-9
  • Caley AJ, Gruss M, Franks NP. The effects of hypoxia on the modulation of human TREK-1 potassium channels. J Physiol (Lond) 2005;562(1):205-12
  • Buckler KJ, Honoré E. The lipid-activated two-pore domain K+ channel TREK-1 is resistant to hypoxia: implication for ischaemic neuroprotection. J Physiol (Lond) 2005;562(1):213-22
  • Heurteaux C, Laigle C, Blondeau N, et al. Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 2006;137(1):241-51
  • Blondeau N, Pétrault O, Manta S, et al. Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 2007;101:176-84
  • Hartness ME, Lewis A, Searle GJ, et al. Combined antisense and pharmacological approaches implicate hTASK as an airway O2 sensing K+ channels. J Biochem Chem 2001;276(28):26499-508
  • Lewis A, Hartness ME, Chapman CG, et al. Recombinant hTASK1 is an O2-sensitive K+ channel. Biochem Biophys Res Commun 2001;285:1290-4
  • Campanucci VA, Brown ST, Judasek K, O'Kelly IM. O2 sensing by recombinant TWIK-related halothane-inhabitable K+ channel-1 background K+ channels heterologously expressed in human embryonic kidney cells. Neuroscience 2005;135(4):1087-94
  • Miller P, Kemp PJ, Peers C. Structural requirements for O2 sensing by the human tandem-P domain, hTREK1. Biochem Biophys Res Commun 2005;331:1253-6
  • Kim Y, Lee SH, Ho WK. Hydrogen peroxide selectively increases TREK-2 currents via myosin light chain kinases. Front Biosci 2007;12:1642-50
  • Heurteaux C, Guy N, Laigle C, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 2004;23:2684-95
  • Keshavaprasad B, Liu C, Au JD, et al. Species-specific differences in response to anesthetics and other modulators by the K2P channel TRESK. Anesth Analg 2005;101:1042-9
  • Linden AM, Aller MI, Leppä E, et al. The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the α2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmcol Exp Ther 2006;317(2):615-26
  • Kang D, Choe C, Kim D. Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol (Lond) 2005;564(1):103-16
  • Maingret F, Patel AJ, Lesage F, et al. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biochem Chem 1999;274(38):26691-6
  • Honoré E, Patel AJ, Chemin J, et al. Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci 2006;103(18):6859-64
  • Veale EL, Buswell R, Clarke CE, Mathie A. Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide. Br J Pharmacol 2007;152:778-86
  • Veale EL, Kennard LE, Sutton GL, et al. Gαq-mediated regulation of TASK3 two-pore domain potassium channels: the role of protein kinase C. Mol Pharmacol 2007;71:1666-75
  • Gierten J, Fickere E, Bloehs R, et al. Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 2008;154:1680-90
  • Clarke CE, Veale EL, Wyse K, et al. The M1P1 loop of TASK3 K2P channels apposes the selectivity filter and influences channel function. J Biol Chem 2008;283(25):16985-92
  • Lalevée N, Monier B, Sénatore S, et al. Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Cur Biol 2007;16:1502-8
  • Zhang C, Wang J, Wang GF, Su L. Relationship between TWIK-related acid-sensitive K+ channel-1 and TWIK-related acid-sensitive K+ channel-3 expression and the occurrence of central sleep apnea: experiment with rats. Zhonghua Yi Xue Za Zhi 2007;87(41):2929-31 (in Chinese)
  • Inglis SK, Brown SG, Constable MJ, et al. A Ba2+-resistant, acid-sensitive K+ conductance in Na+-absorbing H441 human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007;292:L1304-12
  • Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007;47(2):209-56
  • Kim D. Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 2005;11(21):2717-36
  • O'Connell AD, Morton MJ, Hunterm M. Two-pore domain K+ channels–molecular sensors. Biochim Biophys Acta 2002;1566:152-61
  • Honoré E. The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 2007;8(4):251-61
  • Mathie A. Neuronal tow-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol (Lond) 2007;578(Pt 2):377-85
  • Plant LD, Rajan S, Goldstein SA. K2P channels and their protein partners. Curr Opin Neurobiol 2005;15(3):326-33
  • Patel AJ, Honoré E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 2001;24(6):339-46
  • Huang D, Yu B. Recent advance and possible future in TREK-2: a two-pore potassium channel may involved in the process of NPP, brain ischemia and memory impairment. Med Hypotheses 2008;70(3):618-24
  • Duprat F, Lauritzen I, Patel A, Honoré E. The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci 2007;30(11):573-80
  • Uchino H, Morota S, Hirabayashi G, et al. Molecular mechanism of ischemic brain injuries and perspectives of drug therapies for neuroprotection. Masui 2007;56(3):248-70 (in Japanese)
  • Liu C, Cotton JF, Schuyler JA, et al. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress. Brain Res 2005;1031(2):164-73
  • Kindler CH, Yost CS. Two-pore domain potassium channels: new sites of local anesthetic action and toxicity. Reg Anesth Pain Med 2005;30(3):260-74
  • Franks NP, Honoré E. The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 2004;25(11):601-8
  • Mathie A, Sutton GL, Clarke CE, Veale EL. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 2006;111(3):567-83
  • Bryan RM Jr, Joseph BK, Lloyd E, Rusch NJ. Starring TREK-1: the next generation of vascular K+ channels. Circ Res 2007;101:119-21
  • Moudgil R, Michelakis ED, Archer SL. The role of K+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 2006;13(8):615-32
  • Mathie A, Veale EL. Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 2007;8(7):555-62
  • Kemp PJ, Peers C, Lewis A, Miller P. Regulation of recombinant human brain tandem P domain K+ channels by hypoxia: a role for O2 in the control of neuronal excitability? J Cell Mol Med 2004;8(1):38-44
  • Harald FMG. Pharmaceutical compositions comprising CB1 cannabinoid receptor antagonists and potassium channel openers for the treatment of diabetes mellitus type 1, obesity and related conditions (in Chinese). CN101048153A; 2007
  • Cowen NM, Kashkin KB, Yamout KA. Salts of potassium ATP channel openers and uses thereof. EP1968601A2; 2008
  • Cowen NM, Kashkin KB. Pharmaceutical formulations of potassium ATP channels openers and uses thereof. JP2008510835T; 2008
  • Wu G. Method for decreasing blood glucose levels. US2007231273A1; 2007
  • Gehenne JNM, Allue M, Pugliese M. Compounds for the treatment of an acute injury to the central nervous system. JP2008503548T; 2008
  • Haikala H, Hyttila-Hopponem M, Nissinen E, et al. Anti-inflammatory agents. DE60110628T2; 2006
  • Horie S, Saito K, Ishizuka N. Therapeutic agents for overactive bladder. US2008033018A1; 2008
  • Jain N, Sui Z. Novel coumarin derivatives as ion channel openers. US20070037877A1; 2007;
  • Sui Z. Novel coumarin derivatives as ion channel openers. JP2008528495T; 2008
  • Jain N, Xu J, Sui Z. Novel pyridine derivatives as potassium channel openers. JP2008531592T; 2008
  • Jain N, Xu J, Sui Z. Novel quinoline derivatives as potassium ion channel openers. JP2008531590T; 2008
  • Zhang X, Li X, Sui Z. Novel benzopyran derivatives as potassium channel openers. US2007072832A1; 2007
  • Zhang X, Li X, Sui Z. Novel benzopyran derivatives as potassium channel openers. EP1937669A1; 2008
  • Hai W, Yonglin Y, Junhua J. Derivative of new benzothiadiazines, preparation method and usage (in Chinese). CN101092405A; 2007
  • Olesen IJ, Olesen J. Treatment of migraine and headaches. WO2007009462; 2007
  • Dahl BH, Christophersen P, Demnitz J. Diphenylurea derivatives useful as potassium channel activators. JP2008524158T; 2008
  • Hachtel S, Englert HC, Gerlach U, et al. Piperidinesulfonylureas and –thioureas, their preparation, their use and pharmaceutical compositions comprising them. US2008033016A1; 2008
  • Knieps S, Englert HC, Gerlach U, et al. Piperidinesulfonylureas and –thioureas, their preparation, their use and pharmaceutical compositions comprising them. JP2008524132T; 2008 (in German)
  • Antel J, Gregory PC, Lange JHM, et al. Use of CBX cannabinoid receptor modulators as potassium channel modulators. AR060626A1; 2008
  • Antel J, Gregory PC, Lange JHM, et al. Pharmaceutical compositions comprising CBX cannabinoid receptor modulators. WO2007125048A1; 2007
  • Johnson JD, Palma JF, Schweitzer AC, Blume JE. Methods and compositions for treating and diagnosing diabetes. US7053180B2; 2006
  • Aynsley-Green A, Lindley K, Docherty K, et al. Method of diagnosis. WO0190759A3; 2001
  • Ashcroft FM, Trapp S, Hiroshi S. KATP channel. WO0056887A1; 2000
  • Black KL, Ningaraj NS. Method for using potassium channel agonists for delivering a medicant to an abnormal brain region and/or a malignant tumor. JP2003523965T; 2003
  • Gehenne JNM, Rodriquez AMJ, Pugliese M. Compounds for the treatment of inflammation of the central nervous system. JP2008503549T; 2008
  • Salzman AL, Szabo C. Composition comprising a ATP channel inhibitor for use in the treatment of hemorrhagic shock. BR9710957A; 2001
  • Sugawara K, Tomita K, Kozlowski MR, Sawada Y. Compounds produced by a strain of Streptomyces exfoliates. US5332574A; 1994
  • Yokota M. Myocardial cell apoptosis inhibitors. EP1421952A4; 2005
  • Kim JJ, Moon DG. Pharmaceutical composition for preventing and treating sexual dysfunction. AR026506A1; 2003
  • Busija DW. Methods of protecting neuronal function. US6313112; 2001;
  • Busija D. Methods of protecting neuronal function. US6313112B1; 2001;
  • Cornell-Bell AH, Pemberton KE, Temple DL, et al. Uses of kappa-conotoxin PVIIA. US2004092447; 2004
  • Cornell-Bell AH, Pemberton KE, Temple DL, et al. Uses of kappa-conotoxin PVIIA. AU778182B2; 2004
  • Herlands L, Rossetti L, Pocai A. Intranasal administration of hypothalamic ATP-sensitive potassium channels. US2007026079A1; 2007
  • Herlands L, Pocai A, Rossetti L. Intranasal administration of hypothalamic ATP-sensitive potassium channels. WO2006088875A2; 2006
  • Terzic A, Olson TM, Kane GC. Diagnosing and treating potassium channel defects. US2006263805A1; 2006
  • Groppi VE Jr, Deibel MR Jr, Martin R Jr, et al. Protein affecting KATP channels. GR3035039T3; 2001
  • Kiyono S, Miki T, Oyama K. New application of genetically modified animal. JP2006149380A; 2006
  • Susumu S, Takashi M, Junichi M. ATP-sensitive potassium channel gene (Kir6.2/BIR)-deficient animals. DE69928996T2; 2006
  • Golz S, Brueggemeier ULF, Geerts A. Diagnostics and therapeutics for diseases associated with potassium channels, subfamily K, member 1 (KCNK1). WO2005054864A3; 2005
  • Curtis RAJ, Silos-Santiago I. Novel potassium channel molecules and uses therefore. WO0132872A3; 2001
  • Francis-Lang HL, Gillett LA, Margolis JS, et al. Nucleic acids and polypeptides of invertebrate TWIK channels and methods of use. WO0109301A3; 2001
  • Buchman AR, Burks C, Francis-Lang HL, et al. Nucleic acids and polypeptides of invertebrate TWIK channels and methods of use. US6703491B1; 2004
  • Lesage F, Guillemare E, Fink M, et al. Isolated TWIK-1 potassium channel proteins. US7067625B1; 2006
  • Lesage F, Guillemare E, Fink M, et al. Nucleic acid encoding new potassium channel designated TWIK-1. EP0799889B1; 2004
  • Ellinghaus P, Munter K. Modulators of the potassium channels twik-1, task-1, gorl1, sk2 pr pcn1, used to treat arrhythmia, coronary heart disease or hypertension. US2006183665A1; 2006
  • Meadows HJ, Chapman CG. TREK-1 like two pore potassium channels. JP2002511233T; 2002
  • Meadows HJ, Chapman CG. TREK-1 like two pore potassium channels. EP1051485A1; 2000
  • Hervieu GJ, Meadows HJ, Randall AD. New use. EP1187627B1; 2003
  • Golz S, Brueggemeier UFL, Geerts A. Diagnostics and therapeutics for diseases associated with two-pore domain potassium channel (KCN2). WO2005054866A3; 2005
  • Lazdunski M, Honoré E, Lesage F, et al. A method for the identification of anesthetics. JP2002536017T; 2002
  • Saint DA, Zhu H. Potassium channels in human heart. WO2006066334A1; 2006
  • Patel AJ, Honoré E, Lesage F, et al. Method for the identification of anesthetics. US7112403B1; 2006
  • Feinmark SJ, Robinson RB. Method of treating a condition associated with phosphorylation of TASK-1. WO2008013988A9; 2008
  • Robinson RB, Feinmark SJ. Method of treating a condition associated with phosphorylation of TASK-1. WO2007014347A9; 2007
  • Golz S, Brueggemeier ULF, Geerts A. Diagnostics and therapeutics for diseases associated with potassium channel, subfamily K, member 3 (KCNK3). WO2005052586A3; 2005
  • Duprat F, Lesage F, Fink M, Lazdunski M. Family of mammalian potassium channels, their cloning and their use, especially for the screening of drugs. US6309855B1; 2001
  • Chissoe S. Genes associated with COPD. US2008108079A1; 2008
  • Honoré E, Fink M, Lazdunski M, et al. Method for screening substances capable of modulating the activity of a TRAAK potassium channel. US2006024729A1; 2006
  • Lazdunski M, Lesage F, Maingret F. Family of mechanosensitive human channels activated by polyunsaturated fatty acids. US2003049697A1; 2003
  • Golz S, Brueggemeier ULF, Geerts A. Diagnostics and therapeutics for diseases associated with potassium channels, subfamily K, member 4 (KCNK4). WO2005052574A3; 2005
  • Chapman CG, Duckworth DM. Human potassium channel (h-TRAAK). US6426197B1; 2002
  • Duckworth DM, Chapman CG. Polynucleotides encoding a human potassium channel. US6426197B1; 2002
  • Pausch MH, Price LA. Potassium channels, nucleotide sequences encoding them, and methods of using same. US2006110792A1; 2006
  • Pausch MH. Potassium channels, nucleotide sequences encoding them, and methods of using. US2003165806A1; 2003
  • Lazdunski M, Guy N. Method for identifying antidepressants, based on ability of test compounds to inhibit potassium channels that contain two pore domains, also use of antibodies against these channels for treating depression. FR2850397A1; 2004
  • Curtis RAJ, Glucksmann MA, Silos-Santiago I. Novel TWIK-6, TWIK-7, IC23927, TWIK-8, IC47611, IC46715, HNMDA-1, TWIK-9, alpha2delta-4, 8099, 46455, 54414, 53763, 97076, 97102, 44181, 67084FI and 67084alt molecules and uses therefore. US2008032289A1; 2008
  • Curtis RAJ. 56115, a novel human TWIK potassium channel and uses therefore. WO0226983A3; 2002
  • Curtis RAJ, Silos-Santiago I. TWIK-5 potassium polypeptides and uses therefore. US6664373B1; 2003
  • Curtis RAJ. TWIK-5 potassium nucleic acids and uses therefore. US6670149B1; 2003
  • Glucksmann A. 12303, a novel human TWIK molecule and uses therefore. DE60124910T2; 2007
  • Partiseti M. Two P domains potassium channel. WO9936529A2; 1999
  • Lazdunski M, Lesage F, Romey G. Human TREK2, a stretch- and arachidonic acid-sensitive K+ channel activated by inhalational anesthetics and riluzole. US6962976B2; 2005
  • Chapman CG, Duckworth DM. Human TREK2 polypeptides. GB2365010A; 2002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.