183
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Update on patented cholesterol absorption inhibitors

, PhD & , M Pharm
Pages 1083-1107 | Published online: 24 Jun 2009

Bibliography

  • American heart association statistics committee and stroke subcommittee-2007 update. Dallas, TX: American Heart Association, 2007
  • Lusis AJ. Atherosclerosis. Nature 2000;407:233-41
  • The Expert panel. Summary of the second report of the national cholesterol education program (NCEP) J Am Med Assoc 1993;269:3015-23
  • Burnett DA. β-Lactam cholesterol absorption inhibitors. Curr Med Chem 2004;11:1873-87
  • Turley SD, Dietschy JM. Sterol absorption by the small intestine. Curr Opin Lipidol 2003;14:233-40
  • Russell DW. Cholesterol biosynthesis and metabolism. Cardiovasc Drugs Ther 1992;6:103-10
  • Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation 2000;101:207-13
  • Zetia (Ezetimibe). FDA drug approvals 2002 Available from: http://www.fda.gov/cder/foi/label/2006/021445s013lbl.pdf [Last accessed 26 March 2009]
  • Van Heek M, France CF, Compton DS, et al. In vivo mechanism-based discovery of a potent cholesterol absorption inhibitor (SCH-58235) through the identification of the active metabolites of SCH-48461. J Pharmacol Exp Ther 1997;283:157-63
  • Rosenblum SB, Huynh T, Davis HR, et al. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-hydroxyphenyl)-2-azetidinone (SCH-58235): a designed, potent, orally active inhibitor of cholesterol absorption. J Med Chem 1998;41:973-80
  • Thomas S, Klaus VON. Cholesterol absorption inhibitors for the Treatment of Hypercholesterolaemia. Drugs 2002;62:2333-47
  • Vytorin (Ezetimibe/Simvastatin). FDA drug approvals. Available from: http://www.fda.gov/cder/foi/label/2004/21687lbl.pdf [Last accessed 26 March 2009]
  • Beisiegel U. Lipoprotein metabolism. Eur Heart J Suppl 1998;19:A20-3
  • Shepherd J. The role of the exogenous pathway in hypercholesterolemia. Eur Heart J Suppl 2001;3:E2-5
  • Russell DW. Cholesterol biosynthesis and metabolism. Cardiovasc Drugs Ther 1992;6:103-10
  • Ikeda I, Matsuoka R, Hamada T, et al. Cholesterol esterase accelerates intestinal cholesterol absorption. Biochim Biophys Acta 2002;1571:34-44
  • David QH. Regulation of intestinal cholesterol absorption. Annu Rev Physiol 2007;69:221-48
  • Lee RG, Willingham MC, Davis MA, et al. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res 2000;4:1991-2001
  • Clader JW. The discovery of ezetimibe: a view from outside the receptor. J Med Chem 2004;47:1-9
  • Clader JW. Substituted (1,2-Diarylethyl)amide Acyl-CoA: cholesterol acyltransferase inhibitors: effect of polar groups on in vitro and in vivo activity. J Med Chem 1995;38:1600-7
  • Burnett DA, Clader JW, Davis HR. 2-Azetidinones as a inhibitors of cholesterol absorption. J Med Chem 1994;37:1733-36
  • Clader JW, Burnett DA, Caplen MA. 2-Azetidinone cholesterol absorption inhibitors: structure-activity relationships on the heterocyclic nucleus. J Med Chem 1996;39:3694-700
  • Dugar S, Kirkup M, Clader JW, et al. Gamma-lactams and related compounds as cholesterol absorption inhibitors: homologs of the beta-lactam cholesterol absorption inhibitor SCH-48461. Bioorg Med Chem Lett 1995;5:2947-52
  • Bergman M, Morales H, et al. The clinical development of a novel cholesterol absorption inhibitor (abstract). XII International symposium on drugs affecting lipid metabolism 1995;5
  • Van Heek M, Farley C, Compton DS, et al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH-58235, and its glucuronide, SCH-60663. Br J Pharmacol 2000;129:1748-54
  • Gracia CM, Lisnock J, Bull HG, et al. The target of ezetimibe is Niemann Pick C1-like 1 (NPC1L1). Proc Natl Acad Sci USA 2005;102:8132-7
  • Van Heek M, Farley C, Compton DS, et al. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function. Br J Pharmacol 2001;134:409-17
  • Van Heek M, Compton DC, Davis HR. The cholesterol absorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur J Pharmacol 2001;415:79-84
  • Harry R, Douglas S, Lizbeth H, et al. Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in ApoE knockout mice. Arterioscler Thromb Vasc Biol 2001;21:2032-38
  • Catapano AL. Ezetimibe: a selective inhibitor of cholesterol absorption. Eur Heart J Suppl 2001;3:E6-10
  • Seedorf U, Thomas E, Aloys L, et al. Cholesterol absorption inhibitor ezetimibe blocks uptake of oxidized LDL in human macrophages. Biochem Biophys Res Comm 2004;320:1337-41
  • Drazen JM, Ware JH, Morrissey S, et al. Ezetimibe and cancer-an uncertain association. N Eng J Med 2008;359:1398-99
  • Peto R, Emberson J, Landray M, et al. Analysis of cancer data from three ezetimibe trials. N Eng J Med 2008;359:1357-66
  • Schering Corporation. Spirocycloalkyl-substituted azetidinones useful as hypocholesterolemic agents. WO1994017038; 1994
  • Vaccaro WD, Sher R, Davis HR. 2-Azetidinone cholesterol absorption inhibitors: increased potency by substitution of the C-4 phenyl ring. Bioorg Med Chem 1998;6:1429-37
  • Burnett DA, Margaret EB, Clader JW, et al. Synthesis of fluorescent biochemical tools related to the 2-azetidinone class of cholesterol absorption inhibitors. Bioorg Med Chem Lett 2002;12:315-18
  • Xu B, Xianxiu X, Renzhong F, et al. Ezetimibe analogs with a reorganized azetidinone ring: Design, synthesis, and evaluation of cholesterol absorption inhibitions. Bioorg Med Chem Lett 2007;17:101-4
  • Wang Y, Zhao R, Zhang H, et al. Design and synthesis of 2-azetidinone cholesterol absorption inhibitors. Lett Drug Des Discov 2008;5:39-42
  • Carreira M, Werder M, Hauser H, et al. Synthesis and in vitro evaluation of inhibitors of intestinal cholesterol absorption. J Med Chem 2005;48:6035-53
  • Astrazeneca. Diphenylazetidinone possessing cholesterol absorption inhibitory activity. WO2005061452; 2005
  • Astrazeneca. Diphenylazetidinone possessing cholesterol absorption inhibitory activity. WO2005061451; 2005
  • Astrazeneca. Diphenylazetidinone possessing cholesterol absorption inhibitory activity. US20080064676A1; 2008
  • Schering Corporation. Use of azetidinone compounds. US20070106141; 2007
  • Astrazeneca. New 2-azetidinone derivatives useful in the treatment of hyperlipidaemic conditions. WO2006137792A1; 2006
  • Glombik H, Werner K, Stefanie F, et al. Novel diphenylazetidinones, process for their preparation, medicament comprising these compounds and their use. US20020137689; 2007
  • Sanofi Aventis. Ring substituted azetidinones process for their preparation, medicament comprising these compounds and their use. US7176194; 2007
  • American Home Products Corporation. Tris carbamic acid esters: inhibitors of cholesterol absorption; inhibitors of ACAT and CEH. EP0635501; 1994
  • American Home Products Corporation. 4-Carbamoyloxy-piperidine-1-carboxylic acid esters: inhibitors of cholesterol absorption. AU701447; 1995
  • Pfizer Products. Oxazolidinones as cholesterol absorption inhibitors. WO2008104875A1; 2008
  • Dugar S, Michael PK, Clader JW, et al. Gamma lactams and related compounds as cholesterol absorption inhibitors: homologs of the beta lactam cholesterol absorption inhibitor SCH-48461. Bioorg Med Chem Lett 1995;5:2947-52
  • Tobias R, Lisbet K, Moritz W, et al. Heterocyclic ring scaffolds as small-molecule cholesterol absorption inhibitors. Org Biomol Chem 2005;3:3514-23
  • Pfefferkorn JA, Larsen SD, Vanhuis C, et al. Substituted oxazolidinones as novel NPC1L1 ligands for the inhibition of cholesterol absorption. Bioorg Med Chem Lett 2008;18:546-53
  • Vander Jagt DL, Heidrich JE, Linda MC, et al. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster. BMC Pharmacol 2004;4:5-9
  • Feaster SR, Quinn DM. Mechanism-based inhibitors of mammalian cholesterol esterase. Methods Enzymol 1997;286:231-52
  • Feaster SR, Lee K, Baker N, et al. Molecular recognition by cholesterol esterase of active site ligands: structure-activity effects for inhibition by aryl carbamates and subsequent carbamylenzyme turnover. Biochemistry 1996;35:16723-34
  • Lin G, Shieh C-T, Tsai YC, et al. Structure-reactivity probes for active site shapes of cholesterol esterase by carbamate inhibitors. Biochim Biophys Acta 1999;1431:500-11
  • Deck LM, Baca ML, Salas SL, et al. 3-Alkyl-6-chloro-2-pyrones: selective inhibitors of pancreatic cholesterol esterase. J Med Chem 1999;42:4250-6
  • Vander Jagt DL, Heynekamp JJ, Hunsaker LA, et al. Isocoumarin-based inhibitors of pancreatic cholesterol esterase. Bioorg Med Chem 2008;16:5285-94
  • Pietsch M, Gutschow M. Alternate substrate inhibition of cholesterol esterase by thieno[2,3-d][1,3]oxazin-4-ones. J Biol Chem 2002;277:24006-13
  • Pietsch M, Gutschow M. Synthesis of tricyclic 1,3-oxazin-4-ones and kinetic analysis of cholesterol esterase and acetylcholinesterase inhibition. J Med Chem 2005;48:8270-88
  • Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering. Biochim Biophys Acta 2006;1761:1246-59
  • Rampone AJ, Machida CM. Mode of action of lecithin in suppressing cholesterol absorption. J Lipid Res 1981;22:744-52
  • Rampone AJ, Long LR. The effect of phosphatidylcholine and lysophosphatidylcholine on the absorption and mucosal metabolism of oleic acid and cholesterol in vitro. Biochim Biophys Acta 1977;486:500-10
  • Hanasaki K, Yamada K, Yamamoto S, et al. Potent modification of low density lipoprotein by group X secretory phospholipase A2 is linked to macrophage foam cell formation. J Biol Chem 2002;277:29116-24
  • Kolodgie FD, Burke AP, Skorija KS, et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2006;26:2523-29
  • Warner-Lambert Company. PLA2 inhibitors and their use for inhibition of intestinal cholesterol absorption. US5504073; 1996
  • Smithkline Beecham PLC. 2,5-substituted-1-(aminocarbonylalkyl)-pyrimidin-4-one derivatives with LpPLA2, inhibitory activity for the treatment of atherosclerosis. WO2003015786; 2003
  • Smith SA, Stansfield IG, Stanway SJ, et al. The discovery of SB-435495: a potent, orally active inhibitor of lipoprotein-associated phospholipase A2 for evaluation in man. Bioorg Med Chem Lett 2002;12:2603-6
  • Smith SA, Stansfield IG, Stanway SJ, et al. The identification of clinical candidate SB-480848: A potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett 2003;13:1067-70
  • Mohler ER, Ballantyne CM, Davidson MH, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 2008;51:1632-41
  • Clinical trials of SB-480848. Available from: http://clinicaltrials.gov/ ct2/show/NCT00269048 [Last accessed 26 March 2009]
  • Rosenson RS, Mcconnell D, Elliott M, et al. Effects of 1H-indole-3-glyoxamide (A-002) on concentration of secretory phospholipase A2 (PLASMA study): a phase II double-blind, randomised, placebo-controlled trial. Lancet 2009;373:649-58
  • Corson MA. Phospholipase A2 inhibitors in atherosclerosis: the race is on. Lancet 2009;373:608-10
  • Clinical trials of A-002. Available from: http://clinicaltrials.gov/ct2/show/NCT00525954?term = A-002&rank = 1 [Last accessed 26 March 2009]
  • Waddah AA, Gill RK. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 2007;24:1803-22
  • Kramer W, Buscher HP, Gerok W, et al. Bile salt binding to serum components. Eur J Biochem 1979;102:1-9
  • Kramer W. Identification of the bile acid binding proteins in human serum by photoaffinity labeling. Biochim Biophys Acta 1995;1257:230-8
  • Chiang JYJ. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 2004;40:539-51
  • Glaxo Wellcome, Inc. Hypolipidemic benzothiazepine compounds. US5859240; 1999
  • Tollefson MB, Vernier WF, Huang H, et al. A novel class of apical sodium co-dependent bile acid transporter inhibitors: the 2,3-disubstituted-4-phenylquinolines. Bioorg Med Chem Lett 2000;10:277-9
  • Tollefson MB, Stephen AK, Theresa RF, et al. A novel class of apical sodium co-dependent bile acid transporter inhibitors: the 1,2-Benzothiazepines. Bioorg Med Chem Lett 2003;13:3727-30
  • Tremont SJ, Lee LF, Huang HC, et al. Discovery of potent, nonsystemic apical sodium co-dependent bile acid transporter inhibitors (Part 1). J Med Chem 2005;48:5837-52
  • Kitayama K, Nakai D, Kono K, et al. Novel non-systemic inhibitor of ileal apical Na+ -dependent bile acid transporter reduces serum cholesterol levels in hamsters and monkeys. Eur J Pharmacol 2006;539:89-98
  • Insull WJ. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a specific review. South Med J 2006;99:257-73
  • Davidson MH, Dillon MS, Gordon B, et al. Colesevelam hydrocholoride (cholestragel): a new potent bile acid sequesterants associated with a low incidence of gastrointestinal side effect. Arch Intern Med 1999;159:1893-900
  • Clinical trials of colesevelam and ezetimibe combination. Available from: http://clinicaltrials.gov/ct2/show/NCT00185107?term = colesevelam + alone&rank = 4 [Last accessed 26 March 2009]
  • Werner K, Glombik H. Bile acid reabsorption inhibitors (BARI): novel hypolipidemic frugs. Curr Med Chem 2006;13:997-1016
  • Buhman KF, Accad M, Farese RV. Mammalian acyl-CoA:cholesterol acyltransferases. Biochim Biophys Acta 2000;1529:142-54
  • Chang TY, Chang CCY, Cheng D. Acyl-coenzyme A: cholesterol acyltransferase. Annu Rev Biochem 1997;66:613-38
  • Oelkers P, Behari A, Cromley D, et al. Characterization of two human gene encoding acyl coenzyme A-cholesterol acyl transferase related enzymes. J Biol Chem 1998;273:26765-78
  • Kushwaha RS, Rosillo A, Roderiguex R, et al. Expression levels of ACAT1 and ACAT2 genes in the liver and intestine of baboons with high and low lipemic responses to dietary lipids. J Nutr Biochem 2005;16:714-21
  • Akira M, Naomi S, Kiyoshi T, et al. Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages. Arterioscler Thromb Vasc Biol 1998;18:1568-74
  • Suckling KE, Stange EF. Role of acyl-CoA cholesterol acyltransferase in cellular cholesterol metabolism. J Lipid Res 1985;26:647-71
  • American Home Products Corporation. N,N',N'-trisubstituted-5-bisaminomethylene-1,3-dioxane-4, 6-dione inhibitors of acyl-coa:cholesterol-acyl transferase. US5179216; 1993
  • Kusunoki J, Aragane K, Yamaura T, et al. Studies on acyl-CoA: cholesterol acyltransferase (ACAT) inhibitory effects and enzyme selectivity of F-1394, a pantotheic acid derivative. Jap J Pharmacol 1995;67:195-203
  • Kumazawa T, Yanase M, Shirakura S, et al. Inhibitors of acyl-CoA: cholesterol acyltransferase. II. Preparation and hypocholesterolemic activity of optically active dibenz[b,e]oxepi-11-carboxanilides. Chem Pharm Bull 1996;44:222-5
  • Burnett JR, Huff MW. Avasimibe (Pfizer). Curr Opin Investig Drugs 2002;3:1328-33
  • Delsing DJM, Offerman EH, Duyvenvoorde W, et al. Acyl-CoA: cholesterol acyltransferase inhibitor avasimibe reduces atherosclerosis in addition to its cholesterol-lowering effect in ApoE*3-leiden mice. Circulation 2001;103:1778-86
  • Nissen SE, Tuzcu EM, Brewer HB, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 2004;354:1253-63
  • Fazio S, Linton M. Failure of ACAT inhibition to retard atherosclerosis. N Engl J Med 2004;354:1307-9
  • Terasaka N, Miyazakib A, Kasanuki N, et al. ACAT inhibitor pactimibe sulfate (CS-505) reduces and stabilizes atherosclerotic lesions by cholesterol-lowering and direct effects in apolipoprotein E-deficient mice. Atherosclerosis 2007;190:239-47
  • Clinical trials of pactimibe. Available from: http://clinicaltrials.gov/ct2/show/NCT00185042?term = pactimibe&rank = 1 [Last accessed 26 March 2009]
  • Ikenoya M, Yoshinaka Y, Kobayashi H, et al. A selective ACAT-1 inhibitor, K-604, suppresses fatty streak lesions in fat-fed hamsters without affecting plasma cholesterol levels. Atherosclerosis 2007;191:290-7
  • Clinical trials of K-604. Available from: http://clinicaltrials.gov/ct2/show/NCT00851500?term = K604&rank = 1 [Last accessed 25 February 2009]
  • Takeda Pharmaceutical Company Limited. Coumarin derivative process, process for their production and use thereof. US20070179154; 2007
  • Ikeda I, Tanaka K, Sugano M, et al. Discrimination between cholesterol and sitosterol for absorption in rats. J Lipid Res 1988;29:1583-91
  • Davis HR, Zhu LJ, Hoos LM, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole body cholesterol homeostasis. J Biol Chem 2004;279:33586-92
  • Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000;290:1771-5
  • Ge L, Wang J, Qi W, et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 2008;7:508-19
  • Ling WH, Jones PJ. Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci 1995;57:195-206
  • Sugano M, Morioka H, Ikeda I. A comparison of hypocholesterolemic activity of beta-sitosterol and beta-sitostanol in rats. J Nutr 1977;107:2011-9
  • Burnett J. FM-VP4 (Forbes Medi-Tech). Curr Opin Investig Drugs 2003;4:1120-5
  • Wasan KM, Najafi S, Wong J, et al. Assessing plasma lipid levels, body weight, and hepatic and renal toxicity following chronic oral administration of water soluble Phytosterol compound, FM-VP4 to gerbils. J Pharm Sci 2001;4:228-34
  • Wasan KM, Najafi S, Zamfir C, et al. Assessing the plasma pharmacokinetics, tissue distribution, excretion and effects on cholesterol pharmacokinetics of novel hydrophilic compound, FM-VP4, following administration to rats. J Pharm Sci 2001;4:207-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.