92
Views
8
CrossRef citations to date
0
Altmetric
Review

DNA minor groove alkylating agents

Pages 459-474 | Published online: 25 Feb 2005

Bibliography

  • HARTLEY JA, O'HARE CC, BAUMGART J: DNA alkylation and, interstrand cross-linking by treosulfan. Br. J. Cancer (1999) 79:264–266.
  • MILLARD JT, RAUCHER S, HOPKINS PB: Mechlo-rethamine crosslinks deoxyguanosine residues at 5'-GNC sequences in duplex DNA fragments. J. Amer. Chem. Soc. (1990) 112:2459–2460.
  • BRENDEL M, RUHLAND A: Relationship between functionality and genetic toxicology of selected DNA-damaging agents. Mutat. Res. (1984) 133:51–85.
  • VOGEL EW, BARBIN A, NIVARD MJM et al.: Heritable and cancer risks of exposures to anticancer drugs - inter-species comparisons of covalent deoxyribonucleic acid-binding agents. Mutat. Res. (1998) 400(1–2 Special Issue):509–540.
  • WALKER WL, KOPKA ML, GOODSELL DS: Progress in the design of DNA sequence-specific lexitropsins. Biopoly-mers (1997) 44:323–334.
  • BROGGINI M, COLEY HM, MONGELLI N et al: DNAsequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen, mustard derivative of distamycin. Nucleic Acids Res. (1995) 28:81–87.
  • RAGG E, MAZZINI S, BORTOLINI R, MONGELLI N,D'ALESSIO R: 111 NMR investigations on the solution structure of the oligonucleotide 5'-d(ACCT5GATGT) -3V5'-d(ACATCA5GGT)-3' and its interaction with tallimustine. J. Chem. Soc. Perkin Trans. (1998) 2:149–158.
  • HERZIG MCS, TREVINO AV, ARNETT B, WOYNAROWSKIJM: Tallimustine lesions in cellular DNA are at sequence-specific but not region-specific. Biochemistry (1999) 38:14045–14055.
  • •Study of sequence-specificity of tallimustine in cellular DNA.
  • MARCHINI S, COZZI P, BERTA I et al.: Sequence-specific DNA alkylation of novel tallimustine derivatives. AntiCancer Drug Des. (1998) 13:193–205.
  • BARALDI PG, BALBONI G, ROMAGNOLI R et al.: PNU 157977: a new potent antitumor agent exhibiting low in vivo toxicity in mice injected with L1210 leukemia cells. AntiCancer Drug Des. (1999) 14:71–76.
  • WYATT MD, LEE M, GARBIRAS BJ, SOUHAMI RL, HARTLEY JA: Sequence specificity of alkylation for a series of nitrogen mustard-containing analogues of distamycin of increasing binding site size: evidence for increased cytotoxicity with enhanced sequence specificity. Biochemistry (1995) 34:13034–13041.
  • •Interesting structure-activity studies for polypyrrole mustards.
  • XIE G, GUPTA R, LOWN JW: Design, synthesis DNA sequence preferential alkylation and biological evaluation of N-mustard derivatives of distamycin and netropsin analogues. AntiCancer Drug Des. (1995) 10:389–409.
  • BIGIONI M, SALVATORE C, PALMA C et al.: Cytotoxic andantitumor activity of MEN 10710, a novel alkylating derivative of distamycin. AntiCancer Drugs (1997) 8:845–852.
  • WYATT MD, LEE M, HARTLEY JA: The sequence specificity of alkylation for a series of benzoic acid mustard and imidazole-containing distamycin analogues: the importance of local sequence confor-mation. Nucleic Acids Res. (1997) 25:2359–2364.
  • COZZI P, MONGELLI N: Cytotoxics derived fromdistamycin A and congeners. Curr. Pharm. Des. (1998) 4:181–190.
  • BERAN M, JEHA S, O'BRIEN S et al.: Tallimustine, an effective antileukemic agent in a severe combined immunodeficient mouse model of adult myelogenous leukemia, induces remissions in a Phase I study. Clin. Cancer Res. (1997) 3:2377–2384.
  • UTSUNO K, MAEDA Y, TSUBOI M: How and how much can Hoechst 33258 cause unwinding in a DNA duplex? Chem. Pharm. Bull. (1999) 47:1363–1368.
  • DROBYSHEV AL, ZASEDATELEV AS, YERSHOV GM, MIRZABEKOV AD: Massive parallel analysis of DNA-Hoechst 33258 binding specificity with a generic oligodeoxyribonucleotide microchip. Nucleic Acids Res. (1999) 27:4100–4105.
  • •Use of array screening of Hoechst DNA binding.
  • HIGGINS LD, SEARLE MS: Site-specificity of bis-benzim-idazole Hoechst 33258 in A-tract recognition of the DNA dodecamer duplex d(GCAAAATTTTGC)2. Chem. Commun. (1999):1861–1862.
  • FERGUSON LR, DENNY WA: Microbial mutagenic effects of the DNA minor groove binder pibenzimol (Hoechst 33258) and a series of mustard analogues. Mutat. Res. (1995) 329:19–27.
  • SMAILL JB, FAN J-Y, DENNY WA: DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation. AntiCancer Drug Des. (1998) 13:857–880.
  • GONG B, YAN Y: New DNA minor-groove binding molecules with high sequence-selectivities and binding affinities. Biochem. Biophys. Res. Comm. (1997) 240:557–560.
  • TURNER PR, FERGUSON LR, DENNY WA: Binding of polybenzamides to DNA: studies by DNase I and chlorambucil interference footprinting and comparison with Hoechst 33258. AntiCancer Drug Des. (1998) 13:941–954.
  • ATWELL GJ, YAGHI BM, TURNER PR et al: Synthesis DNA interactions and biological activity of DNA minor groove targeted polybenzamide-linked nitrogen mustards. Bioorg. Med. Chem. (1995) 3:679–691.
  • TURNER PR, FERGUSON LR, DENNY WA: Polybenzamide mustards: structure-activity relationships for DNA sequence-specific alkylation. AntiCancer Drug Des. (1999) 14:61–70.
  • ADAMS A, GUSS M, COLLYER C, DENNY WA, WAKELINLPG: Crystal structure of the topoisomerase II inhibitor 9-amino4N-(2-dimethylamino)ethyl] acridine-4-carboxamide bound to the DNA hexanu-cleotide d(CGTAGC)2. Biochemistry (1999) 38:9221–9233.
  • •First crystal structure data on the DNA binding of this class of ligands.
  • FAN J-Y, VALU KK, WOODGATE PD, BAGULEY BC, DENNY WA: Aniline mustard analogues of the DNA-intercalating agent amsacrine: DNA interaction and biological activity. AntiCancer Drug Des. (1997) 12:181–203.
  • FAN J-Y, OHMS SJ, BOYD M, DENNY WA DNA: Adducts of9-anilinoacridine mustards: characterization by NMR. Chem Res. Tox. (1999) 12:1166–1172.
  • DAS A, TANG KS, GOPALAKRISHNAN S, WARING MJ, TOMASZ M: Reactivity of guanine at m5CpG steps in DNA: evidence for electronic effects transmitted through the base pairs. Chem. Biol. (1999), 6:461–471.
  • PALOM Y, BELCOURT MF, KUMAR GS et al.: Formation ofa major DNA adduct of the mitomycin metabolite 2,7-diaminomitosene in EMT6 mouse mammary tumor cells treated with mitomycin C. Oncol. Res. (1998) 10:509–521.
  • PALOM Y, LIPMAN R, MUSSER SM, TOMASZ M: A mitomycin-N6-deoxyadenosine adduct isolated from DNA. Chem. Res. Toxicol (1998) 11:203–210.
  • PRITSOS CA, BRIGGS LA, GUSTAFSON DL: A new cellulartarget for mitomycin C: a case for mitochondrial DNA. Oncol. Res. (1997) 9:333–337.
  • BELCOURT MF, PENKETH PG, HODNICK, WF et al.: Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA. Proc. Natl. Acad. ScL USA (1999) 96:10489–10494.
  • LAMBERT PA, KANG Y, GREAVES B, PERRY RR: The importance of DT-diaphorase in mitomycin C resistance in human colon cancer cell lines. J. Surg. Res. (1998) 80:177–181.
  • HAFFTY BG, SON YH, WILSON LD et al.: Bioreductivealkylating agent porfiromycin in combination with radiation therapy for the management of squamous cell carcinoma of the head and neck. RadiaL Oncol. Invest. (1997) 5:235–245.
  • ZAKOTNIK B, SMID L, BUDIHNA M et al.: Concomitant radiotherapy with mitomycin C and bleomycin compared with radiotherapy alone in inoperable head and neck cancer: final report. Int. J. Radiat. Oncol. Phys. (1998) 41:1121–1127.
  • SCHRIJVERS D, CATIMEL G, HIGHLEY M et al.: KW-2149-induced pulmonary toxicity is not prevented by corticosteroids: a Phase I and pharmacokinetic study. AntiCancer Drugs (1999), 10:633–639.
  • MCADAM SR, KNOX RJ, HARTLEY JA, MASTERS JRW: KW-2149 (7-N[2-fr-L-glutamylaminolethyldithioethyl] mitomycin C): DNA interactions and drug uptake following serum activation. Biochem. Pharmacol (1998) 55:1777–1783.
  • WOO J, SIGURDSSON ST, HOPKINS PB: DNA interstrandcross-linking reactions of pyrrole-derived bifunc-tional heterocycles: evidence for a common target site in DNA. J. Am. Chem. Soc. (1993) 115:3407–3415.
  • ELLIOT WL, FRY DW, ANDERSON WK et al.: In vivo and in vitro evaluation of the alkylating agent carmethizole. Cancer Res. (1991) 51:4581–4587.
  • ATWELL GJ, FAN J-Y, TAN K, DENNY WA: DNA-Directed alkylating agents. 7. Synthesis, DNA interaction and antitumor activity of bis(hydroxymethyD- and bislcarbamatel-substituted pyrrolizines and imidazoles. J. Med. Chem. (1998) 41:4744–4754.
  • KUPCHINSKY S, ESPINOSA JE, JOHNSON K et al.: Design, synthesis and DNA binding properties of a series of 4,5-bis(substitutec)-1,2,3-triazole derivatives of imidazole- and pyrrole-containing analogs of distamycin. Heterocycl. Commun. (1998) 4:415–422.
  • THURSTON DE, BOSE DS: Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines. Chem. Rev. (1994) 94:433–465.
  • KOPKA ML, GOODSELL DS, BAIKALOV I et al: Crystalstructure of a covalent DNA-drug adduct: anthramycin bound to C-C-A-A-C-G-T-T-G-G and a molecular explanation of specificity. Biochemistry (1994) 33:13593–13610.
  • PUVVADA MS, FORROW SA, HARTLEY JA et al. Inhibition of, bacteriophage Ti RNA polymerase in vitro transcription, by DNA-binding pyrrolo[2,1-c][1,4] benzodiazepines. Biochemistry (1997) 36:2478–2484.
  • THURSTON DE, BOSE DS, HOWARD PW et al: Effect of A-ring modifications on the DNA-binding behavior and cytotoxicity of pyrrolo[2,1-c][1,4]benzodi-azepines. J. Med. Chem. (1999) 42:1951–1964.
  • GREGSON SJ, HOWARD PW, JENKINS TC, KELLAND LR, THURSTON DE: Synthesis of a novel C2/C2 `-exo unsaturated pyrrolobenzodiazepine cross-linking agent with remarkable DNA binding affinity and cytotoxicity. Chem. Comm. (1999) 9:797–798.
  • •Very potent bis-(pyrrolobenzodiazepines).
  • REDDY BSP, DAMAYANTHI Y, LOWN JW: Design and effcient sythesis of novel DNA interstrand cross-linking agents: C2-linked pyrrolo[2,1-c][1,4]benzodi-azepine dimers. Synlett. (1999) 7:1112–1114.
  • WILSON SC, HOWARD PW, FORROW SM et al.: Design, synthesis and evaluation of a novel sequence-selective epoxide-containing DNA cross-linking agent based on the pyrrolo[2,1-c][1,4]benzodiazepine system. J. Med. Chem. (1999) 42:4028–4041.
  • MOORE BM, SEAMAN FC, WHEELHOUSE RT, HURLEY LH:Mechanism for the catalytic activation of ecteinascidin 743 and its subsequent alkylation of guanine N2. J. Amer. Chem. Soc. (1998) 120:2490–2491.
  • SEAMAN FC, HURLEY LH: Molecular basis for the DNAsequence selectivity of ecteinascidin 736 and 743: evidence for the dominant role of direct readout via hydrogen bonding. J. Amer. Chem. Soc. (1998) 120:13028–13041.
  • ZEWAIL-FOOTE M, HURLEY LH: Ecteinascidin 743: aminor groove alkylator that bends DNA toward the major groove. J. Med. Chem. (1999) 42:2493–2497.
  • TAKEBAYASHI Y, POURQUIER P, YOSHIDA A, KOHLHAGEN G, POMMIER Y: Poisoning of human DNA topoisomerase I by ecteinascidin 743, an anticancer drug that selectively alkylates DNA in the minor groove. Proc. Natl. Acad. ScL USA (1999) 96:7196–7201.
  • •Evidence of topo I poisoning by an alkylator.
  • BOGER DL, BOLLINGER B, HERTZOG DL et al.: Reversed and, sandwiched analogs of duocarmycin SA -establis-hment of the origin of the sequence-selective alkyla-tion of DNA and new insights into the of catalysis. J. Amer. Chem. Soc. (1997) 119:4987–4997.
  • ASAI A, YANO K, MIZUKAMI T NAKANO H: Characteriza-tion of a duocarmycin-DNA adduct-recognizing protein in cancer cells. CancerRes. (1999) 59:5417–5420.
  • BOGER DL, JOHNSON DS: CC-1065 and the duocarmycins: understanding their biological function through mechanistic studies. Angew. Chem. Int. Ed. Engl. (1996) 35:1438–1474.
  • BOGER DL, BOYCE CW, GARBACCIO RM, GOLDBERG JA:CC-1065 and the duocarmycins: synthetic studies. Chem. Rev. (1997) 97:787–828.
  • FUKUDA Y, TERASHIMA S: A novel synthesis of (-0-duocarmycin SA. Tet. Lett. (1997) 38:7207–7208.
  • MURATAKE H, TONEGAWA M, NATSUME M: Synthesis ofduocarmycin SA by way of methyl 4-(methoxycar-bonyl)oxy-311-pyrrolo[3,2-fiquinoline-2-carboxylate as a tricyclic heterocyclic intermediate. Chem. Pharm. Bull. (1998) 46:400–412.
  • MURATAKE H, MATSUMURA N, NATSUME M: Prepara-tion of alkyl-substituted indoles in the benzene portion. Part 15. Asymmetric synthesis of (+)-duocarmycin SA using novel procedure for preparation of hydroxyindoles. Chem. Pharm. (1998) 46:559–571.
  • TIETZE LF, BUHR W, LOOFT J GROTE T: Efficientsynthesis of the pharmacophore of the highly potent antitumor antibiotic CC-1065. Chem.-Eur. J. (1998) 4:1554–1560.
  • MURATAKE H, HAYAKAWA A, NATSUME M: A novel phenol-forming reaction for preparation of benzene, furan and thiophene analogs of CC-1065/ duocarmycin pharmacophores. Tet. Lett. (1997) 38:7577–7580.
  • MURATAKE H, OKABE K, TAKAHASHI M, TONEGAWA M,NATSUME M: Synthesis of furan and thiophene analogs of duocarmycin SA. Chem. Pharm. Bull. (1997) 45:799–806.
  • BARALDI PG, CACCIARI B, GUIOTTO A et al.: Synthesis,cytotoxicity and antitumor activity of some new simplified pyrazole analogs of the antitumor agent CC-1065. Effect of an hydrophobic group on antitumor activity. Farmaco (1997) 52:711–716.
  • BARALDI PG, CACCIARI B, ROMAGNOLI R et al.: Resolu-tion of a CPzI precursor, synthesis and biological evaluation of (+) and (-)-N-Boc-CPzI: a further valida-tion of the relationship between chemical solvolytic stability and cytotoxicity. Bioorg. Med. Chem. Lett. (1999) 9:3087–3092.
  • FUJIWARA T, TAO Z-F, OZEKI Y et al.: Modulation ofsequence specificity of duocarmycin-dependent DNA alkylation by pyrrole-imidazole triamides. J. Am. Chem. Soc. (1999) 121:7706–7707.
  • •Very interesting influence of reversible DNA binders on duocarmycin alkylation.
  • TAO Z-F, FUJIWARA T, SAITO I, SUGIYAMA H: Sequence-specific DNA alkylation by hybrid molecules between segment A of duocarmycin A and pyrrole/imidazole diamide. Angew. Chem. Int. Ed. Engl. (1999) 38:650–653.
  • TAO Z-F, FUJIWARA T, SAITO I, SUGIYAMA H: Sequence-specific alkylation of DNA by duocarmycin A and its novel derivatives bearing PY/IM polyamides. Nucleo-sides Nucleotides (1999) 18:1615–1616.
  • BOGER DL, HAN N: CC-1065/duocarmycin and bleomycin A2 hybrid agents: lack of enhancement of DNA alkylation by attachment to noncomplementary DNA binding subunits. Bioorg. Med. Chem. (1997) 5:233–243.
  • LUKHTANOV EA, KUTYAVIN IV, GORN VV et al. Sequence, and structure dependence of the hybridization-triggered reaction of oligonucleotides bearing, conjugated cyclopropapyrroloindole. J. Am. Chem. Soc. (1997) 119:6214–6225.
  • DEMPCY RO, KUTYAVIN IV, MILLS AG, LUKHTANOV EA,MEYER RB: Linkers designed to intercalate the double helix greatly facilitate DNA alkylation by triplex-forming oligonucleotides carrying a cyclopropapyr-roloindole reactive moiety. Nucleic Acids Res. (1999) 27:2931–2937.
  • YOON LH, LEE CS: Sequence selectivity of DNA alkyla-tion by adozelesin and carzelesin. Arch. Pharm. Res. (1998) 21:385–390.
  • CRISTOFANILLI M, BRYAN WJ, MILLER LL et al.: Phase IIstudy of adozelesin in untreated metastatic breast cancer. AntiCancer Drugs (1998) 9:779–782.
  • BOGER DL, GARBACCIO RM: A novel class of CC-1065and duocarmycin analogues subject to mitomycin-related reductive activation. J. Org. Chem. (1999) 64:8350–8362.
  • BOGER DL, TURNBULL P: Synthesis and evaluation of CC-1065 and duocarmycin analogs incorporating the 1,2,3,4,11,11a-hexahydrocyclopropakinaphtho[2,1-b] azepin-6-one (CNA) alkylation subunit: structural features that govern reactivity and reaction regioselec-tivity. J. Org. Chem. (1997) 62:5849–5863.
  • BOGER DL, GARBACCIO RM, JIN Q: Synthesis and evaluation of CC-1065 and duocarmycin analogs incorporating the iso-CI and iso-CBI alkylation subunits: impact of relocation of the C-4 carbonyl. J. Org. Chem. (1997) 62:8875–8891.
  • BOGER DL, SANTILLAN A, SEARCEY M, JIN Q: Synthesis and evaluation of duocarmycin and CC-1065 analogues containing modifications in the subunit linking amide. J. Org. Chem. (1999) 64:5241–5244.
  • BOGER DL, SANTILLAN A, SEARCEY M, JIN Q: Criticalrole of the linking amide in CC-1065 and the duocarmycins: implications on the source of DNA alkylation catalysis. J. Am. Chem. Soc. (1998) 120:11554–11557.
  • KINUGAWA M, NAGAMURA S, SAKAGUCHI A et al.: Practical synthesis of the high-quality antitumor agent KW-2189 from duocarmycin B2 using a facile one-pot synthesis of an intermediate. Org. Process Res. Dev. (1998) 2:344–350.
  • AMISHIRO N, NAGAMURA S, KOBAYASHI E, GOMI K, SAITO H: New water-soluble duocarmycin derivatives: synthesis and antitumor activity of A-ring pyrrole compounds bearing p-heteroarylacryloyl groups. J. Med. Chem. (1999) 42:669–676.
  • AMISHIRO N, OKAMOTO A, MURAKATA C et al.: Synthesis and antitumor activity of duocarmycin derivatives: Modification of segment-A of A-ring pyrrole compounds. J. Med. Chem. (1999) 42:2946–2960.
  • ALBERTS SR, ERLICHMAN C, REID JM et al.: Phase I studyof the duocarmycin semisynthetic derivative KW-2189 given daily for five days every six weeks. Clin. Cancer Res. (1998) 4:2111–2117.
  • TERCEL M, GIESEG MA, MILBANK JBJ et al.: Cytotoxicityand DNA interaction of the enantiomers of 6-amino-3-(chloromethy0-1-[(5,6,7-trimethoxyindol-2-yOcarbonyl]indoline (amino-seco-CI-TMO. Chem. Res. Tox (1999) 12:700–706.
  • ATWELL GJ, TERCEL M, BOYD M, WILSON WR, DENNYWA: Synthesis and cytotoxicity of 5-amino-1-(chloro-methyl)-3-[(5,6,7-trimethoxyindol-2-3/1) carbonyl] -1,2-dihydro -311-benz[e]indole (amino-seco-CBI-TMO and related 5-alkylamino analogues: new DNA minor groove alkylating agents. J. Org. Chem. (1998) 63:9414–9420.
  • •Synthesis and cytotoxicity of amino-CBI compounds.
  • TERCEL M, GIESEG MA, DENNY WA, WILSON WR: Synthesis and cytotoxicity of amino-seco-DSA, an amino analogue of the DNA alkylating agent duocarmycin SA. J. Org. Chem. (1999) 64:5946–5953.
  • GIESEG MA, MATEJOVIC J, DENNY WA: Comparison of the patterns of DNA alkylation by phenol and amino seco-CBI-TMI compounds: use of a PCR method for the facile preparation of single end-labelled double-stranded DNA. AntiCancer Drug Des. (1999) 14:77–84.
  • MILBANK JBJ, TERCEL M, ATWELL GJ et al.: Synthesis of 1-substituted 3- (chloromethyl) -6-aminoindoline (6-amino-seco-00 DNA minor groove alkylating agents and structure-activity relationships for their cytotoxicity. J. Med. Chem. (1999) 42:649–658.
  • ATWELL GJ, MILBANK JBJ, WILSON WR, HOGG A, DENNYWA: 5-Amino-1-(chloromethyl)-1,2-dihydro-311-benz[e]indoles: relationships between structure and cytotoxicity for analogues bearing different DNA minor groove binding subunits. J. Merl. Chem. (1999) 42:3400–3411.
  • HAY MP, SYKES BM, DENNY WA, WILSON WR: A 2-nitroimidazole carbamate prodrug of 5-amino-1-(chloromethy0-34(5,6,7-trimethoxyindol-2-yOcarbony11-1,2-dihydro-311-benz[e]indole (amino-seco-CBI-TMO for use with ADEPT and GDEPT. Bioorg. Med. Chem. Lett. (1999) 9:2237–2242.
  • HIDALGO M, IZBICKA E, CERNA C et al.: Comparativeactivity of the cyclopropylpyrroloindole compounds adozelesin, bizelesin and carzelesin in a human tumor colony-forming assay. AntiCancer Drugs (1999) 10:295–302.
  • LEE S-J, SEAMAN FC, SUN D et al.: Replacement of thebizelesin ureadiyl linkage by a guanidinium moiety retards translocation from monoalkylation to crosslinking sites on DNA. J. Am. Chem. Soc. (1997) 119:3434–3442.
  • WOYNAROWSKI JM, BEERMAN TA: Effects of bizelesin(U-77,779), a bifunctional alkylating minor groove binder, on replication of genomic and simian virus 40 DNA in BSC-1 cells. Biochim. Biophys. Acta (1997) 1353:50–60.
  • WOYNAROWSKI JM, CHAPMAN WG, NAPIER C, HERZIGMCS: Induction of AT-specific DNA-interstrand crosslinks by bizelesin in genomic and simian virus 40 DNA. Biochim. Biophys. Acta. (1999) 1444:201–217.
  • FUKUDA Y, SETO S, FURUTA H, EBISU H, OOMORI Y:Novel cyclopropapyrroloindole (CPI) bisalkylators bearing 3,3'-(1,4-phenylene)diacryloyl groups as a linker. Bioorg. Merl. Chem. Lett. (1998) 8:2003–2004.
  • KIELKOPF CL, BREMER RE, WHITE S et al.: Structural effects of DNA sequence on TA recognition by hydroxypyrrole/pyrrole pairs in the minor groove. J. Mol. Biol. (2000) 295:557–567
  • DERVAN PB, BURLI RW: Sequence-specific DNA recognition by polyamides. Curr. Opin. Chem. Biol. (1999) 3:688–693.
  • HERMAN DM, TURNER JM, BAIRD EE, DERVAN PB: Cycle polyamide motif for recognition of the minor groove of DNA. J. Am. Chem. Soc. (1999) 121:1121–1129.
  • DICKINSON LA, TRAUGER JW, BAIRD EE et al.:Anti-repression of RNA polymerase II transcription by pyrrole-imidazole polyamides. Biochemistry (1999) 38:10801–10807.
  • DICKINSON LA, GULIZIA RJ, TRAUGER JW et al: Inhibi-tion of RNA polymerase II transcription in human cells by synthetic DNA-binding ligands. Proc. Nat1 Acad. ScL USA (1998) 95:12890–12895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.