19
Views
0
CrossRef citations to date
0
Altmetric
Review

Towards gene therapy of sickle cell disease

&
Pages 1081-1093 | Published online: 25 Feb 2005

Bibliography

  • EMBURY SH, HEBBEL RP, MOHANDAS N et al: Sickle Cell Disease: Basic Principle and Clincal Practice. Raven Press Ltd, New York, USA (1994).
  • PAGNIER J, MEARS JG, DUNDA-BELKHODJA 0 et al: Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc. Natl. Acad. Sci. USA (1984) 81:1771–1773.
  • STEINBERG MH: Modulation of the phenotypic diversity of sickle cell anemia. Hemoglobin (1996) 20:1–19.
  • HEBBEL RP: Perspectives series: cell adhesion invascular biology. Adhesive interactions of sickle erythrocytes with endothelium. J Clin. Invest. (1997) 99:2561–2564.
  • KAUL DK, FABRY ME, NAGEL RL: The pathophysiology of vascular obstruction in the sickle syndromes. Blood Rev. (1996) 10:29–44.
  • COLESTRAUSS A, YOON KG, XIANG YF et al.: Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science (1 9 9 6) 2 73:1386-1389.
  • GURA T: Repairing the genome's spelling mistakes. Science (1999) 285:316–318.
  • BEETHAM PR, KIPP PB, SAWYCKY XL et al.: A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Nati Acad. Sci. USA (1999) 96:8774–8778.
  • ZHU T, PETERSON DJ, TAGLIANI L et al: Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc. Natl. Acad. Sci. USA (1999) 96:8768–8773.
  • KADONAGA JT: Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell (1998) 92:307–313.
  • KREN BT, BANDYOPADHYAY P, STEER CJ: In vivo site-directed mutagenesis of the Factor IX gene by chimeric RNA/DNA oligonucleotides. Nature Med. (1998) 4:285–290.
  • WANG G, SEIDMAN MM, GLAZER PM: Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science (1996) 271:802–805.
  • WANG G, LEVY DD, SEIDMAN MM et al.: Targeted mutagenesis in mammalian cells mediated by intracel-lular triple helix formation. Mol. Cell. Biol. (1995) 15:1759–1768.
  • EMERY DW, STAMATOYANNOPOULOS G: Stem cell genetherapy for the beta-chain hemoglobinopathies. Problems and progress. Ann. NY Acad. Sci. (1999) 872:94–108
  • LEBOULCH P, HUANG GM, HUMPHRIES RK et al: Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J. (1994) 13:3065–3076.
  • RIVELLA S, SADELAIN M: Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Semin. Hematol. (1998) 35:112–125.
  • BURNS JC, FRIEDMANN T, DRIEVER W et al: Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. ScL USA (1993) 90:8033–8037.
  • NALDINI L, BLOMER U, GALLAY P et al: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (1996) 272:263–267.
  • PAWLIUK R, BACHELOT T, WISE RJ et al.: Long-term cure of the photosensitivity of murine erythropoietic protoporphyria by preselective gene therapy. Nature Med. (1999) 5:768–773.
  • PERSONS DA, ALLAY JA, RIBERDY JM et al.: Use of the green fluorescent protein as a marker to identify and track genetically modified hematopoietic cells. Nature Med. (1998) 4:1201–1205.
  • PAWLIUK R, EAVES CJ, HUMPHRIES RK: Sustained high-level reconstitution of the hematopoietic system by preselected hematopoietic cells expressing a transduced cell-surface antigen. Hum. Gene Ther. (1997) 8:1595–1604.
  • SORRENTINO BP, ALLAY JA, BLAKLEY RL: In vivo selection of hematopoietic stem cells transduced with DHFR- expressing retroviral vectors. Prog. Exp. Tumour Res. (1999) 36:143–161.
  • ALLAY JA, PERSONS DA, GALIPEAU J et al: In vivo selection of retrovirally transduced hematopoietic stem cells. Nature Med. (1998) 4:1136–1143.
  • BLAU CA: In vivo selection of genetically modified bone marrow cells. Prog. Exp. Tumour Res. (1999) 36:162–171.
  • KARPEN GH: Position-effect variegation and the new biology of heterochromatin. Curr. Opin. Genet. Dev. (1994) 4:281–291.
  • TUAN D, SOLOMON W, LI Q et al.: The 'beta-like -globin' gene domain in human erythroid cells. Proc. NatL Acad. Sci. USA (1985) 82:6384–6388.
  • GROSVELD F, VAN ASSENDELFT GB, GREAVES DR et al:Position-independent, high-level expression of the human beta- globin gene in transgenic mice. Cell (1987) 51:975–985.
  • KALBERER CP, PAWLIUK R, IMREN S et al: From the cover: preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta -globin in engrafted mice. Proc. Natl. Acad. ScL USA (2000) 97:5411–5415.
  • EMERY DW, MORRISH F, LI Q et al.: Analysis of gamma-globin expression cassettes in retrovirus vectors. Hum. Gene Ther. (1999) 10:877–888.
  • ALAMI R, GREALLY JM, TANIMOTO K et al.: Beta-globin YAC transgenes exhibit uniform expression levels but position effect variegation in mice. Hum. Mol Genet. (2000) 9:631–636.
  • KELLUM R, ELGIN SC: Chromatin boundaries: punctu-ating the genome. Curr. Biol. (1998) 8:R521–R524.
  • CHUNG JH, BELL AC, FELSENFELD G: Characterization of the chicken beta-globin insulator. Proc. Nat. Acad. ScL USA (1997) 94:575–580.
  • BELL AC, WEST AG, FELSENFELD G: The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell (1999) 98:387–396.
  • BELL A, BOYES J, CHUNG J et al.: The establishment of active chromatin domains. Cold Spring Harb. Symp. Quant. Biol. (1998) 63:509–514.
  • RIVELLA S, CALLEGARI JA, MAY C et al.: The c115.4 insulator increases the probability of retroviral expression at random chromosomal integration sites. Virol. (2000) (In Press).
  • WALTERS MC, FIERING S, BOUHASSIRA EE et al.: The chicken beta-globin 51154 boundary element blocks enhancer-mediated suppression of silencing. Mol. Biol. (1999) 19:3714–3726.
  • REN SC, WONG BY, LI JH etal.: Production of genetically stable high-titer retroviral vectors that carry a human gamma-globin gene under the control of the alpha-globin locus control region. Blood (1996) 87:2518–2524.
  • GALLAGHER PG, SABATINO DE, ROMANA M et al.: A human beta-spectrin gene promoter directs high level expression in erythroid but not muscle or neural cells. J. Biol. Chem. (1999) 274:6062–6073.
  • ASANO H, LI XS, STAMATOYANNOPOULOS G: FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol. Biol. (1999) 19:3571–3579.
  • JANE SM, NIENHUIS AW, CUNNINGHAM JM: Hemoglobin switching in man and chicken is mediated by a heteromeric complex between the ubiquitous transcription factor CP2 and a developmentally specific protein [published erratum appears in EMBO J 1995 Feb 15;14(0854]. EMBO J (1995) 14:97–105.
  • HOLMES ML, HALEY JD, CERRUTI L et al.: Identification of Id2 as a globin regulatory protein by representa-tional difference analysis of K562 cells induced to express gamma-globin with a fungal compound. Mol. (1999) 19:4182–4190.
  • JANE SM, CUNNINGHAM JM: Understanding fetal globin gene expression: a step towards effective HbF reactiva-tion in haemoglobinopathies. Br. J. Haematol. (1998) 102:415–422.
  • BOUHASSIRA EE, WESTERMAN K, LEBOULCH P: Transcriptional behavior Of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood (1997) 90:3332–3344.
  • FENG YQ, SEIBLER J, ALAMI R et al.: Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J. Mol. Biol. (1999) 292:779–785.
  • SEIBLER J, SCHUBELER D, FIERING S et al.: DNA cassette exchange in ES cells mediated by FLP recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochem. (1998) 37:6229–6234.
  • SOUKHAREV S, MILLER JL, SAUER B: Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res. (1999) 27:e21.
  • PADLAN EA, LOVE WE: Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refine-ment at 3.0-A resolution. J. Biol. Chem. (1985) 260:8272–8279.
  • WATOWICH SJ, GROSS LJ, JOSEPHS R: Intermolecular contacts within sickle hemoglobin fibers. J. Mol. (1989) 209:821–828.
  • WISHNER BC, WARD KB, LATTMAN EE et al.: Crystalstructure of sickle-cell deoxyhemoglobin at 5 A resolu-tion. J. Mol Biol. (1975) 98:179–194.
  • NAGEL RL, BOOKCHIN RM, JOHNSON J et al.: Structuralbases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc. Natl. Acad. ScL USA (1979) 76:670–672.
  • MCCUNE SL, REILLY MP, CHOMO MJ et al.: Recombinanthuman hemoglobins designed for gene therapy of sickle cell disease. Proc. Natl. Acad. ScLUSA (1994) 91:9852–9856.
  • HOC, WILLIS BF, SHEN TJ et al. Roles of alpha 114 and 87 amino acid residues in the polymerization of S: implications for gene therapy. J. Mol. Biol. (1996) 263:475–485.
  • ROY RP, ACHARYA AS: Semisynthesis of hemoglobin. Methods Enzymol. (1994) 231:194–215.
  • RAO MJ, MANJULA BN, KUMAR R et al.: Chimeric hemoglobins-hybrids of human and swine hemoglobin: assembly and stability of interspecies hybrids. Protein ScL (1996) 5:956–965.
  • BIRIKH KR, HEATON PA, ECKSTEIN F: The structure, function and application of the hammerhead ribozyme. Eur. J. Biochem. (1997) 245:1–16.
  • ALAMI R, GILMAN JG, FENG YQ et al.: Anti betaS-ribozyme reduces betaS mRNA levels in transgenic mice: Potential application to the gen therapy of sickle cell anemia. Blood Cells Mol. Dis. (1999) 25:110–119.
  • LAN N, HOWREY RP, LEE SW et al.: Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science (1998) 280:1593–1596.
  • GREAVES DR, FRASER P, VIDAL MA et al.: A transgenic mouse model of sickle cell disorder. Nature (1990) 343:183–185.
  • RYAN TM, TOWNES TM, REILLY MP et al.: Human sicklehemoglobin in transgenic mice. Science (1990) 247:566–568.
  • MONPLAISIR N, MERAULT G, POYART C et al.:Hemoglobin S Antilles: a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes. Proc. Natl. Acad. Sci. USA (1986) 83:9363–9367.
  • POPP RA, POPP DM, SHINPOCK SG et al.: A transgenicmouse model of hemoglobin S Antilles disease. Blood (1997) 89:4204–4212.
  • TRUDEL M, DE PAEPE ME, CHRETIEN N et al.: Sickle celldisease of transgenic SAD mice. Blood (1994) 84:3189–3197.
  • TRUDEL M, SAADANE N, GAREL MC et al.: Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. EMBO J (1991) 10:3157–3165.
  • FABRY ME, SENGUPTA A, SUZUKA SM et al.: A second generation transgenic mouse model expressing both hemoglobin S (HbS) and HbS-Antilles results in increased phenotypic severity. Blood (1 9 9 5) 86:2419-2428.
  • FABRY ME, COSTANTINI F, PACHNIS A et al.: High expression of human beta S- and alpha-globins in transgenic mice: erythrocyte abnormalities, organ damage and the effect of hypoxia. Proc. Natl. Acad. ScL USA (1992) 89:12155–12159.
  • FABRY ME, NAGEL RL, PACHNIS A et al: High expression of human beta S- and alpha-globins in transgenic mice: hemoglobin composition and hematological consequences. Proc. Natl. Acad. Sci. USA (1992) 89:12150–12154.
  • REILLY MP, CHOMO MJ, OBATA K et al. Red blood cell and density changes under ambient and hypoxic conditions in transgenic mice producing sickle hemoglobin. Exp. HematoL (1994) 22:501–509.
  • RYAN TM, CIAVATTA DJ, TOWNES TM: Knockout-transgenic mouse model of sickle cell disease. Science (1997) 278:873–876.
  • PASZTY C, BRION CM, MANCI E et al.: Transgenicknockout mice with exclusively human sickle hemoglobin and sickle cell disease. Science (1997) 278:876–878.
  • RHODA MD, DOMENGET C, VIDAUD M et al.: Mousealpha chains inhibit polymerization of hemoglobin induced by human beta S or beta S Antilles chains. Biochim. Biophys. Acta (1988) 952:208–212.
  • FABRY ME, SUZUKA SM, RUBIN EM et al.: Strategies foramelioration of sickle cell disease: use of the transgenic mouse for validation of anti-sickling strate-gies. In: Sickle cell disease and thalassemias: new trends in therapy Y Beuzard, B Lubin, J Rosa (Eds.), John Libbey Eurotext Ltd., London, UK (1995) 234:253–262.
  • NAGEL RL, FABRY ME: The panoply of animal modelsfor sickle cell anaemia. Br. J. HemaL (2000) (In Press).
  • BLOUIN MJ, BEAUCHEMIN H, WRIGHT A et al.: Geneticcorrection of sickle cell disease: insights using transgenic mouse models. Nature Med. (2000) 6:177–182.
  • NAGEL RL: A knockout of a transgenic mouse - animalmodels of sickle cell anemia. N Engl. J. Med. (1998) 339:194–195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.