71
Views
13
CrossRef citations to date
0
Altmetric
Review

p53 as a drug target in cancer therapy

Pages 923-935 | Published online: 25 Feb 2005

Bibliography

  • LEVINE AJ: p53, the cellular gatekeeper for growth and division. Cell(1997) 88:323–331.
  • STEELE RJ, THOMPSON AM, HALL PA, LANE DP: The p53 tumour suppressor gene. Br. J. &mg.(1998) 85:1460–1467.
  • BATES S, VOUSDEN KH: Mechanisms of p53-mediated apoptosis. Cell. Mol. Life Li.(1999) 55:28–37.
  • OREN M, ROTTER V: Introduction: p53-the first twenty years. Cell. Mal Life Sci.(1999) 55:9–11.
  • HAINAUT P, HOLLSTEIN M: p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res.(2000) 77:81–137.
  • KO LJ, PRIVES C: p53: puzzle and paradigm. Genes Dev.(1996) 10:1054–1072.
  • DONEHOWER LA, HARVEY M, SLAGLE BL etal.:Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature(1992) 356:215–221.
  • HOLLSTEIN M, HERGENHAHN M, YANG Q, BARTSCH H, WANG ZQ, HAINAUT P: New approaches to understanding p53 gene tumor mutation spectra. Mutat Res.(1999) 431:199–209.
  • SOUSSI T, DEHOUCHE K, BEROUD C: p53 website and analysis of p53 gene mutations in human cancer: forging a link between epidemiology and carcinogenesis. Hum. Mutat.(2000) 15:105–213.
  • HOLLSTEIN M, SIDRANSKY D, VOGELSTEIN B, HARRIS CC: p53 mutations in human cancers. Science(1991) 253:49–53.
  • AMUNDSON SA, MYERS TG, FORNACE AJ: Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene(1998) 17:3287–3299.
  • HARRIS CC: Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. j. Natl. Cancer Inst.(1996) 88:1442–1455.
  • ROTH JA, SWISHER SG, MEYN RE: p53 tumor suppressor gene therapy for cancer. Oncology (Huntingt)(1999) 13:148–154.
  • CLAYMAN GL: The current status of gene therapy. Semi]. Oiled.(2000) 27:39–43.
  • ROTH JA, NGUYEN D, LAWRENCE DD etal.:Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat. Med.(1996) 2:985–991.
  • •Clinical trials reporting the delivery of p53 with a retroviral vector.
  • CLAYMAN GL, FRANK DK, BRUSO PA, GOEPFERT H: Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin. Cancer Res.(1999) 5:1715–1722.
  • NIELSEN LL, MANEVAL DC: p53 tumor suppressor gene therapy for cancer. Cancer Gene Ther.(1998) 5:52–63.
  • GALLAGHER WM, BROWN R: p53-oriented cancer therapies: current progress. Ann. Oncol(1999) 10:139–150.
  • GURNANI M, LIPARI P, DELL J, SHI B, NIELSEN LL: Adenovirus-mediated p53 gene therapy has greater efficacy when combined with chemotherapy against human head and neck, ovarian, prostate and breast cancer. Cancer Chemother. Pharmacol(1999) 44:143–151.
  • CHMURA SJ, ADVANI SJ, KUFE DW, WEICHSELBAUM RR: Strategies for enhancing viral-based gene therapy using ionizing radiation. Radiat. Oncol. Investig. (1999) 7:261–269.
  • PIROLLO KF, BOUKER KB, CHANG EH: Does p53 status influence tumor response to anticancer therapies? AntiCancer Drugs(2000) 11:419–432.
  • PIROLLO K1 HAO Z, RAIT A et al:p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene(1997) 14: 1735-1746.
  • SPITZ FR, NGUYEN D, SKIBBER JM, MEYN RE, CRISTIANO RJ, ROTH JA: Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin. Cancer Res.(1996) 2:1665–1671.
  • BROADDUS WC, LIU Y, STEELE LL et al.:Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. I Neurosurg.(1999) 91:997–1004.
  • COWEN D, SALEM N, ASHOORI F et al.:Prostate cancer radiosensitization in vivowith adenovirus-mediated p53 gene therapy. Clin. Cancer Res.(2000) 6:4402–4408.
  • FUJIWARA T, GRIMM EA, MUKHOPADHYAY T, ZHANG WW, OWEN-SCHAUB LB, ROTH JA: Induction of chemosensitivity in human lung cancer cells in vivoby adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res.(1994) 54:2287–2291.
  • ROTH JA: Modification of tumor suppressor gene expression and induction of apoptosis in non-small cell lung cancer (NSCLC) with an adenovirus vector expressing wildtype p53 and cisplatin. Hum. Gene Ther.(1996) 7:1013–1030.
  • NIELSEN LL, SHI B, HAJIAN G et al:Combination therapy with the farnesyl protein transferase inhibitor 5CH66336 and SCH58500 (p53 adenovirus) in preclinical
  • •• cancer models. Cancer Res.(1999) 59:5896–5901.
  • NIELSEN LL, LIPARI P, DELL J, GURNANI M, HAJIAN G: Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate and breast cancer. Clin. Cancer Res.(1998) 4:835–846.
  • OSAKI S, NAKANISHI Y, TAKAYAMA K, PEI XH, UENO H, HARA N: Alteration of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells. Cancer Gene Ther.(2000) 7:300–307.
  • INOUE A, NARUMI K, MATSUBARA N et al:Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett.(2000) 157:105–112.
  • MIYAKE H, HARA I, HARA S, ARAKAWA S, KAMIDONO S: Synergistic chemosensitization and inhibition of tumor growth and metastasis by adenovirus-mediated P53 gene transfer in human bladder cancer model. Urology(2000) 56:332–336.
  • PUTZER BM, BRAMSON JL, ADDISON CL et al:Combination therapy with interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer. Hum. Gene Ther.(1998) 9:707–718.
  • CAI DW, MUKHOPADHYAY T, LIU Y, FUJI WARA T, ROTH JA: Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum. Gene Ther.(1993) 4:617–624.
  • HAN X, KASAHARA N, KAN YVV: Ligand-directed retroviral targeting of human breast cancer cells. Proc. Natl. Acad. Sci. USA(1995) 92:9747–9751.
  • SOSNOWSKI BA, GONZALEZ AM, CHNADLER LA, BUECHLER YJ, PIERCE GE BAIRD A: Targeting DNA to cells with basic fibroblast growth factor (FGF2). J. Bid. Chem.(1996) 271:33647–33653.
  • DRUMMOND DC, MEYER 0, HONG K, KIRPOTIN DB, PAPAHADJOPOULOS D: Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev(1999) 51:691–743.
  • HARRINGTON KJ, LEWANSKI CR, STEWART JS: Liposomes as vehicles for targeted therapy of cancer. Part 1: preclinical development. Clin. Oncol(2000) 12:2–15.
  • HARRINGTON KJ, LEWANSKI CR, STEWART JS: Liposomes as vehicles for targeted therapy of cancer. Part 2: clinical development. Clin. Oncol(2000) 12:16–24.
  • DASS CR, BURTON MA: Lipoplexes and tumours. A review. J. Pharm. Pharmacol(1999) 51:755–770.
  • LESOON-WOOD LA, KIM WH, KLEINMAN HK, WEINTRAUB BD, MIXSON AJ: Systemic gene therapy with p53 reduces growth and metastases of a malignant human breast cancer in nude mice. Hum. Gene Ther.(1995) 6:395–405.
  • HSIAO M, TSE V, CARMEL J, TSAI Yet al.:Intracavitary liposome-mediated p53 gene transfer into glioblastoma with endogenous wild-type p53 in vivoresults in tumor suppression and long-term survival. Biochem. Biophys. Res. Commun.(1997) 233:359–364.
  • NAMOTO M, YONEMITSU Y, NAKAGAWA K et al.:Heterogeneous induction of apoptosis in colon cancer cells by wild-type p53 gene transfection. Int. J. Oncol(1998) 12:777–784.
  • ZOU Y, ZONG G, LING YH et al:Effective treatment of early endobronchial cancer with regional administration of liposome-p53 complexes. J. Natl. Cancer Inst.(1998) 90:1130–1137.
  • XU L, PIROLLO KF, CHANG EH: Transferrin-liposome-mediated p53 sensitization of squamous cell carcinoma of the head and neck to radiation in vitro. Hum. Gene Ther(1997) 8:467–475.
  • SINGH M: Transferrin as a targeting ligand for liposomes and anticancer drugs. Cun: Pharm. Des.(1999) 5:443–451.
  • SUDIMACK J, LEE RJ: Targeted drug delivery viathe folate receptor. Adv. Drug Deity Rev(2000) 41:147–162.
  • BISCHOFF JR, KIRN DH, WILLIAMS A etal.:An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science(1996) 274:373–376.
  • ••Initial description of an engineered virusthat specifically replicates in p53-deficient cells.
  • HEISE C, SAMPSON-JOHANNES A, WILLIAMS A, MCCORMICK F, VON HOFF DD, TURN DH: ONYX-015, an ElB gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med.(1997) 3:639-645. First study with ONYX–015.
  • HEISE CC, WILLIAMS AM, XUE S, PROPST M, TURN DH: Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res.(1999) 59:2623–2628.
  • NEMUNAITIS J, GANLY I, KHURI F et al.:Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an El B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a Phase II trial. Cancer Res.(2000) 60:6359–6366.
  • KHURI FR, NEMUNAITIS J, GANLY I et al.:a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med.(2000) 6:879–885.
  • YOU L, YANG CT, JABLONS DM: ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res.(2000) 60:1009–1013.
  • HEISE C, LEMMON M, TURN D: Efficacy with a replication-selective adenovirus plus cisplatin-based chemotherapy: dependence on sequencing but not p53 functional status or route of administration. Clin. Cancer Res.(2000) 6:4908–4914.
  • ROGULSKI KR, FREYTAG SO, ZHANG K etal.: In vivoantitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res.(2000) 60:1193–1196.
  • MEDINA DJ, SHEAY W, GOODELL L et al.:Adenovirus-mediated cytotoxicity of chronic lymphocytic leukemia cells. Blood(1999) 94:3499–3508.
  • HUPP TR, MEEK DW, MID GLEY CA,LANE DP: Regulation of the specific DNA binding function of p53. Cell (1992)71:875–886.
  • HALAZONETIS TD, KANDIL AN: Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J.(1993) 12:5057–5064.
  • HUPP TR, LANE DP: Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases. Cold Spring Harb. Symp. Quant. Biol.(1994) 59:195–206.
  • HUPP TR, LANE DP: Allosteric activation of latent p53 tetramers. Curr. Biol.(1994) 4:865–875.
  • SELIVANOVA G, KAWASAKI T, RYABCHENKO L, WIMAN KG: Reactivation of mutant p53: a new strategy for cancer therapy. Semirr. Cancer Biol.(1998) 8:369–378.
  • JAYARAMAN J, PRIVES C: Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell(1995) 81:1021–1029.
  • CARON DE FROMENTEL C, GRUEL N, VENOT C et al.:Restoration of transcriptional activity of p53 mutants in human tumour cells by intracellular expression of anti-p53 single chain EV fragments. Oncogerre(1999) 18:551–557.
  • HUPP TR, MEEK DW, MIDGLEY CA, LANE DP: Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acid Res.(1993) 21:3167–3174.
  • MILNER J: Flexibility: the key to p53 function? Trends Biochem. Li.(1995) 20:49–51.
  • BULLOCK AN, HENCKEL J, DEDECKER BS et al.:Thermodynamic stability of wild-type and mutant p53 core domain. Proc. Natl. Acad. Li. USA(1997) 94:14338–14342.
  • BULLOCK AN, HENCKEL J, FERSHT AR: Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogerre(2000) 19:1245–1256.
  • HUPP TR, SPARKS A, LANE DP: Small peptides activate the latent sequence-specific DNA binding function of p53. Cell(1995) 83:237–245.
  • ABARZUA ELOSARDO JE, GUBLER ML A et al.:Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogerre(1996) 13:2477–2482.
  • SELIVANOVA G, IOTSOVA V, OKAN I et al.:Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med.(1997) 3:632–638.
  • SELIVANOVA G, RYABCHENKO L, JANSSON E, IOTSOVA V, WIMAN KG: Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Ma. Cell. Biol.(1999) 19:3395–3402.
  • HANSEN S, MIDGLEY CA, LANE DE FREEMAN BC, MORIMOTO RI, HUPP TR: Modification of two distinct COOH-terminal domains is required for murine p53 activation by bacterial Hsp70. _J. Biol. Chem.(1996) 271:30922–30928.
  • FOSTER BA, COFFEY HA, MORIN MJ, RASTINEJAD F: Pharmacological rescue of mutant p53 conformation and function. Science(1999) 286:2507–2510.
  • ••Description of compounds that act of thefolding of the p53 mutants.
  • ELLIS RJ, HARTL FU: Principles of protein folding in the cellular environment. Cun: Opin. Struct. Biol.(1999) 9:102–110.
  • BLAGOSKLONNY MV, TORETSKY J, NECKERS L: Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogerre(1995) 11:933–939.
  • BLAGOSKLONNY MV, TORETSKY J, BOHEN S, NECKERS L: Mutant conformation of p53 translated in vitroor in vivorequires functional HSP90. Proc. Nati Acad. Sci. USA(1996) 93:8379–8383.
  • WHITESELL L, SUTPHIN P, AN WG, SCHULTE T, BLAGOSKLONNY MV, NECKERS L: Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogerre(1997) 14:2809–2816.
  • JUVEN-GERSHON T, OREN M: Mdm2: the ups and downs. Ma. Med.(1999) 5:71–83.
  • MOMAND J, ZAMBETTI GP, OLSON DC, GEORGE D, LEVINE AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell(1992) 45:343–352.
  • HONDA R, YASUDA H: Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogerre(2000) 19:1473–1476.
  • FANG S, JENSEN JP, LUDWIG RL, VOUSDEN KH, WEISSMAN AM: Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. _J. Biol. Chem.(2000) 275:8945–8951.
  • ROTH J, DOBBELSTEIN M, FREEDMAN DA, SHENK T, LEVINE AJ: Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein viaa pathway used by the human immunodeficiency virus rev protein. EMBO J.(1998) 17:554–564.
  • MOMAND J, JUNG D, WILCZYNSKI S, NILAND J: The MDM2 gene amplification database. Nucleic Acid Res.(1998) 26:3453–3459.
  • CHEN L, AGRAWAL S, ZHOU W, ZHANG R, CHEN J: Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc. Natl. Acad. Li. USA(1998) 95:195–200.
  • CHEN L, LU W, AGRAWAL S, ZHOU W, ZHANG R, CHEN J: Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Md. Med.(1999) 5:21–34.
  • TORTORA G, CAPUTO R, DAMIANO V et al.:A novel MDM2 anti-sense oligonucleotide has anti-tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer. Int. J. Cancer(2000) 88:804–809.
  • SATO N, MIZUMOTO K, MAEHARA N etal.:Enhancement of drug-induced apoptosis by antisense oligodeoxynucleotides targeted against Mdm2 and p21WAF1/CIP1. AntiCancer Res.(2000) 20:837–842.
  • KONDO S, BARNETT GH, HARA H, MORIMURA T, TAKEUCHI J: MDM2 protein confers the resistance of a human glioblastoma cell line to cisplatin-induced apoptosis. Oncogerre(1995) 10: 2001-2006.
  • WANG H, ZENG X, OLIVER P et al.:MDM2 oncogene as a target for cancer therapy: An antisense approach. Int. J. arca(1999) 15:653–660.
  • KUSSIE PH, GORINA S, MARECHAL V etal.:Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science(1996) 274:948–953.
  • GARCIA-ECHEVERRIA C, CHENE P, BLOMMERS MJ, FURET P: Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. JMed. Chem(2000) 43:3205–3208.
  • CHENE P, FUCHS J, BOHN J, GARCIA-ECHEVERRIA C, FURET P, FABBRO D: A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. I Md. Bid.(2000) 299:245–253.
  • STOLL R, RENNER C, HANSEN S A et al.:Chalcone derivatives antagonize interactions between the human Expert Op/n. Ther. Patents (2001)11(6)933 oncoprotein MDM2 and p53. Biochemistry(2001) 40:336–344.
  • BLAYDES JP, WYNFORD-THOMAS D: The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene(1998) 16:3317–3322.
  • MOLL UM, OSTERMEYER AG, HALADAY R, WINKFIELD B, FRAZIER M, ZAMBETTI G: Cytoplasmic sequestration of wild-type p53 impairs the G1 checkpoint after DNA damage. Mal Cell. Biol.(1996) 16:1126–1137.
  • WADHWA R, TAKANO S, ROBERT M et al:Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J. Biol. Chem.(1998) 273:29586–29591.
  • WADHWA R, TAKANO S, MITSUI Y, KAUL SC: NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 protein. Cell Res.(1999) 9:261–269.
  • WADHWA R, SUGIHARA T, YOSHIDA A, NOMURA H, REDDEL RR, SIMPSON R et al:Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res.(2000) 60:6818–6821.
  • SOUSSI T: p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res.(2000) 60:1777–1788.
  • CHEN HL, CARBONE DP: p53 as a target for anti-cancer immunotherapy. Mal Med. Today (1997)3:160–167.
  • DELEO AB: p53-based immunotherapy of cancer. Grit. Rev Immunol(1998) 18:29–35.
  • RUIZ PJ, WOLKOWICZ R, WAISMAN A et al.:Idiotypic immunization induces immunity to mutated p53 and tumor rejection. Nat. Med.(1998) 4:710–712.
  • BERTHOLET S, IGGO R, CORRADIN G: Cytotoxic T lymphocyte responses to wild-type and mutant mouse p53 peptides. Eur. Immunol.(1997) 27:798–801.
  • CIERNIK IE BERZOFSKY J, CARBONE DP: Mutant oncopeptide immunization induces CTL specifically lysing tumor cells endogenously expressing the corresponding intact mutant p53. Hybridoma(1995) 14:139–142.
  • WIEDENFELD EA, FERNANDEZ-VINA M, BERZOFSKY JA, CARBONE DP: Evidence for selection against human lung cancers bearing p53 missense mutations which occur within the HLA A*0201 peptide consensus motif. Cancer Res.(1994) 54:1175–1177.
  • VIERBOOM MP, NIJMAN HW, OFFRINGA R etal.:Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J. Exp. Med.(1997) 186:695–704.
  • GNJATIC S, CAI Z, VIGUIER M, CHOUAIB S, GUILLET JG, CHOPPIN J: Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J. Immunol(1998) 160:328–333.
  • OFFRINGA R, VIERBOOM MP, VAN DER BURG SH, ERDILE L, MELIEF CJ: p53: a potential target antigen for immunotherapy of cancer. Ann. NY Acad. Sci.(2000) 910:223-333; Discussion 233–236.
  • HOFFMANN TK, NAKANO K, ELDER EM et al:Generation of T cells specific for the wild-type sequence p53(264-272) peptide in cancer patients: implications for immunoselection of epitope loss variants. J. Immunol(2000) 165:5938–44.
  • ROTH J, DITTMER D, READ, TARTAGLIA J, PAOLETTI E, LEVINE AJ: p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proc. Natl. Acad. Li. USA(1996) 93:4781–4786.
  • KOMAROV PG, KOMAROVA EA, KONDRATOV RV et al.:A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science(1999) 285: 1733-1737.
  • CHANDEL NS, VANDER HEIDEN MG, THOMPSON CB, SCHUMACKER PT: Redox regulation of p53 during hypoxia. Oncogene(2000) 19:3840–3848.
  • JAYARAMAN L, MURTHY KG, ZHU C, CURRAN T, XANTHOUDAKIS S, PRIVES C: Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev.(1997) 11:558–570.
  • GAIDDON C, MOORTHY NC, PRIVES C: Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J.(1999) 18:5609–5621.
  • UENO M, MASUTANI H, ARAI RJ et al:Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J. Biol. Chem.(1999) 274:35809–35815.
  • HAINAUT E MILNER J: Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res.(1993) 53:4469–4473.
  • LIU M, PELLING JC, JU J, CHU E, BRASH DE: Antioxidant action viap53-mediated apoptosis. Cancer Res.(1998) 58:1723–1729.
  • WU HH, MOMAND J: Pyrrolidine dithiocarbamate prevents p53 activation and promotes p53 cysteine residue oxidation. J. Biol. Chem.(1998) 273:18898–18905.
  • LIU GY, FRANK N, BARTSCH H, LIN JK: Induction of apoptosis by thiuramdisulfides, the reactive metabolites of dithiocarbamates, through coordinative modulation of NFicB, c- fosic-jun and p53 proteins. Mal Carcinog.(1998) 22:235–246.
  • HAUPT Y, MAYA R, KAZAZ A, OREN M: Mdm2 promotes the rapid degradation of p53. Nature(1997) 387:296–299.
  • KUBBUTAT MH, JONES SN, VOUSDEN KH: Regulation of p53 stability by Mdm2. Nature(1997) 387:299–303.
  • RIES SJ, BRANDTS CH, CHUNG AS et al.:Loss of pl4ARF in tumor cells facilitates replication of the adenovirus mutant d11520(ONYX-015). Nat. Med.(2000) 6:1128–1123.
  • ZEIMET AG, RIHA, K, BERGER J et al:New insights into p53 regulation and gene therapy for cancer. Biochem. Pharmacol(2000) 60:1153–1163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.