44
Views
6
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of potassium channel modulators for CNS disorders

, &
Pages 23-32 | Published online: 02 Mar 2005

Bibliography

  • SHIEH CC, COGHLAN M, SULLIVAN JP, GOPALAKRISHNAN M: Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol. Rev (2000) 52:557–594.
  • ••Excellent review of K+ channel function inthe context of disease.
  • CHANDY KG, GUTMAN GA: Voltage-gated potassium channels. In: Ligand and Voltage-Gated Ion Channels, North A (ed.), Boca Raton, Fl., CRC Press (1995) 1–71.
  • ••A comprehensive review of voltage-gated K+channels.
  • REIMANN F, ASHCROFT FM: Inwardlyrectifying potassium channels. Curt: Opin. Cell Biol. (1999) 11:503–508.
  • WAXMAN SG: Transcriptional channelopathies: an emerging class of disorders. Nat. Rev Neurosci. (2001) 2:652–659.
  • JAN LY, BARBELS, TIMPE L et al.: Mutating a gene for a potassium channel by hybrid dysgenesis: an approach to the cloning of the Shaker locus in Drosophila. Cold Spring Harb. Symp. Quant. Biol. (1983) 48(1):233–245.
  • COOPER EC: Potassium channels: how genetic studies of epileptic syndromes open paths to new therapeutic targets and drugs. Epilepsia (2001) 42 (Supp1.5) : 49–54.
  • WANG HS, PAN Z, SHI Wet al: KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science (1998) 282: 1890-1893.
  • VERGARA C, LATORRE R, MARRION NV, ADELMAN JP: Calcium-activated potassium channels. Curr. Opin. Neurobiol. (1998) 8:321–329.
  • •Useful review of calcium-activted K+ channels.
  • GRIBKOFF VK, STARRETT JE Jr, DWORETZKY SI: The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels. Adv. Pharmacol. (1997) 37:319–348.
  • GRIBKOFF VK, STARRETT JE Jr, DWORETZKY SI: Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist (2001) 7:166–177.
  • STARRETT JE, Jr., DWORETZKY SI, GRIBKOFF VK: Modulators of large-conductance calcium-activated potassium (B K) channels as potential therapeutic targets. Curr. Pharm. Design (1996) 2:413–428.
  • TAMURA A, GRAHAM DI, MCCULLOCH J, TEASDALE GM: Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. Cereb. Blood Flow Metal,. (1981) 1:53–60.
  • CHENEY JA, WEISSER JD, BAREYRE FM et al.: The maxi-K channel opener BMS-204352 attenuates regional cerebral edema and neurologic motor impairment after experimental brain injury. J. Cereb. Blood Flow Metab. (2001) 21:396–403.
  • GRIBKOFF VK, STARRETT JE Jr, DWORETZKY SI et al.: Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat. Med. (2001) 7:471–477.
  • DUPUIS DS, SCHRODER RL, JESPERSEN T et al: Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352. Eur. Pharmacol. (2002) 437:129–137.
  • SCHRODER RL, JESPERSEN T, CHRISTOPHERSEN P et al.: KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology (2001) 40:888–898.
  • CASTLE NA: Recent advances in the biology of small conductance calcium-activated potassium channels. Perspectives M Drug Discovery and Design (1999) 15/16:131–154.
  • SHAH M, HAYLETT DG: The pharmacology of hSK1 Ca2±-activated K+ channels expressed in mammalian cell lines. Br. J. Pharmacol. (2000) 129:627–630.
  • VAN DER STAAY FJ, FANELLI, RJ, BLOKLAND A, SCHMIDT BH: Behavioral effects of apamin, a selective inhibitor of the SK(Ca)-channel, in mice and rats. Neurosci. Biobehav. Rev (1999) 23:1087–1110.
  • BENINGTONJH, WOUDENBERG MC, HELLER HC: Apamin, a selective SK potassium channel blocker, suppresses REM sleep without a compensatory rebound. Brain Res. (1995) 692:86–92.
  • GANDOLFO G, SCHWEITZ H, LAZDUNSKI M, GOTTESMANN C: Sleep cycle disturbances induced by apamin, a selective blocker of Ca(2+)-activated K+ channels. Brain Res. (1996) 736:344–347.
  • CAMPOS RJ, ROSA J, GALANAKIS D et al.: Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, non-peptidic blockers of the apamin-sensitive Ca(2+)-activated K(+) channel.j Med. Chem. (2000) 43:420–431.
  • CHEN JQ, GALANAKIS D, GANELLIN CR et al: bis-Quinolinium cyclophanes: 8,14-diaza-1,7(1, 4)-diquinolinacyclo-tetradecaphane (UCL 1848), a highly potent and selective, nonpepticlic blocker of the apamin-sensitive Ca(2+)-activated K(+) channel.' Med. Chem. (2000) 43:3478–3481.
  • MARRION NV: Control of M-current. Ann. Rev Physiol. (1997) 59:483–504.
  • SCHROEDER BC, HECHENBERGER M, WEINREICH F, KUBISCH C, JENTSCH TJ: KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. " Biol. Chem. (2000) 275:24089–24095.
  • SELYANKO AA, HADLEY JK, WOOD IC et al.: Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. Physiol. (2000) 522 Pt 3:349–355.
  • BIERVERT C, SCHROEDER BC, KUBISCH C et al.: A potassium channel mutation in neonatal human epilepsy. Science (1998) 279:403–406.
  • CHARLIER C, SINGH NA, RYAN SG et al.: A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat. Gen. (1998) 18:53–55.
  • SINGH NA, CHARLIER C, STAUFFER D et al.: A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. (1998) 18:25–29.
  • WANG HS, BROWN BS, MCKINNON D, COHEN IS: Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991. Mol. Pharmacol. (2000) 57:1218–1223.
  • SCHNEE ME, BROWN BS: Selectivity of linopirdine (DuP 996), a neurotransmitter release enhancer, in blocking voltage-dependent and calcium-activated potassium currents in hippocampal neurons. J. Pharmacol. Exp. Ther: (1998) 286:709–717.
  • ZACZEK R, CHORVAT RJ, SAYE JA et al.: Two new potent neurotransmitter release enhancers, 10,10-bis(4-pyridinylmethyl) -9 (10H)-anthracenone and 10,10-bis(2-fluoro-4-pyridinylmethyl)-9(10H)-anthracenone: comparison to linopirdine. I Pharmacol. Exp. The]: (1998) 285:724–730.
  • PIENIASZEK HJ Jr, FISKE WD, SAXTON TD et al.: Single-dose pharmacokinetics, safety, and tolerance of linopirdine (DuP 996) in healthy young adults and elderly volunteers. J. Clin. Pharmacol. (1995) 35:22–30.
  • EARL RA, ZACZEK R, TELEHA CA et al.: 2-Fluoro-4-pyridinylmethyl analogues of linopirdine as orally active acetylcholine release-enhancing agents with good efficacy and duration of action. I Med. Chem. (1998) 41:4615–4622.
  • MAIN MJ, CRYAN JE, DUPERE JR et al.: Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol. Pharmacol. (2000) 58:253–262.
  • WICKENDEN AD, YU W, ZOU A, JEGLA T, WAGONER PK: Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol. Pharmacol. (2000) 58:591–600.
  • NAGAKI N, GONOI T, CLEMENT JP et al: A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron (1996) 16:1011–1017.
  • HEURTEAUX C, BERTAINA V, WIDMANN C, LAZDUNSKI M: K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloidP-protein precursor genes and neuronal death in rat hippocampus. Proc. Natl. Acad. Sci. USA (1993) 90:9431–9435.
  • GOODMAN Y, MATTSON MP: K+ channel openers protect hippocampal neurons against oxidative injury and amyloid beta-peptide toxicity. Brain Res. (1996) 706:328–332.
  • HERNANDEZ-SANCHEZ C, BASILE AS, FEDOROVA et al: Mice transgenically overexpressing sulfonylurea receptor 1 in forebrain resist seizure induction and excitotoxic neuron death. Proc. Natl Acad. Sci. USA (2001) 98:3549–3554.
  • OCANA M, BARRIOS M, BAEYENS JM: Cromakalim differentially enhances antinociception induced by agonists of a(2)adrenoceptors, y-aminobutyric acid(B), 11 and lc opioid receptors. I Pharmacol. Exp. The]: (1996) 276:1136–1142.
  • GALEOTTI N, GHELARDINI C, CALDARI B, BARTOLINI A: Effect of potassium channel modulators in mouse forced swimming test. Br. J. Pharmacol. (1999) 126:1653–1659.
  • GUO W, TODD K, BOURIN M, HASCOET M, KOUADIO F: Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade. Pharmacol. Biochem. Behav. (1996) 54:725–730.
  • REDROBE JP, PINOT P, BOURIN M: The effect of the potassium channel activator, cromakalim, on antidepressant drugs in the forced swimming test in mice. Fundam. Clin. Pharmacol. (1996) 10:524–528.
  • KOURRICH S, MOURRE C, SOUMIREU-MOURAT B: Kaliotoxin, a Kv1.1 and Kv1.3 channel blocker, improves associative learning in rats. Behav. Brain Res. (2001) 120:35–46.
  • MEIRI N, GHELARDINI C, TESCO G et al.: Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat. Proc. Nati Acad. Sci. USA (1997) 94:4430–4434.
  • SMART SL, LOPANTSEV V, ZHANG CL et al.: Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron (1998) 20:809–819.
  • CLARK JD, TEMPEL BL: Hyperalgesia in mice lacking the Kv1.1 potassium channel gene. Neurosci. Lett. (1998) 251:121–124.
  • DOYLE DA, MORAIS CJ, PFUETZNER RA eta].: The structure of the potassium channel: molecular basis of K± conduction and selectivity. Science (1998) 280:69–77.
  • •Significant publication on the elucidation of the crystal structure of the KcsA K± channel.

Websites

  • www.iddb3.com IDdb database. Drug report on Flindokalner (BMS-204352). Information extracted from page last updated 1st November 2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.