34
Views
5
CrossRef citations to date
0
Altmetric
Review

Molecular targets for cell cycle inhibition and cancer therapy

&
Pages 329-346 | Published online: 02 Mar 2005

Bibliography

  • SAUSVILLE EA, JOHNSON J, ALLEY M, ZAHAREVITZ D, SENDEROWICZ AM: Inhibition of CDKs as a therapeutic modality. Ann. N Y Acad. Sci. (2000) 910:207–221.
  • OWA T, YOSHENO H, YOSHIMATSU K, NAGASU T: Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Cum Med Chem. (2001) 8:1487–1503.
  • SENDEROWICZ AM: Cyclin-dependent kinase modulators: a novel class of cell cycle regulators for cancer therapy. Cancer Chemother. Biol. Response Modi I (2001) 19:165–188.
  • DUMAS J: Protein kinase inhibitors: emerging pharmacophores 1997–2000. Expert Opin. Ther: Patents. (2001) 11:405–429.
  • FERO ML, RANDEL E, GURLEY KE, ROBERTS JM, KEMP CJ: The murine gene p27Kipl is haplo-insufficient for tumour suppression. Nature (1998) 396:177–180.
  • ••An important study showing that p27 actsas a haplo-insufficient tumour suppressor.
  • CATZAVELOS C, BHATTACHARYA N, UNG YC et al: Decreased levels of the cell-cycle inhibitor p27Kipl protein: prognostic implications in primary breast cancer. Nat. Med. (1997) 3:227–230.
  • ••Characterises the roles of p27 in breastcancer.
  • PORTER PL, MALONE KE, HEAGERTY PJ et al.: Expression of cell-cycle regulators p27Kipl and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat. Medicine (1997) 3:222–225.
  • ••Characterises the roles of p27 in breastcancer.
  • CORDON-CARDO C, KOFF A, DROBNJAK M et al.: Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. Natl. Cancer Inst (1998) 90:1284–1291.
  • ••Characterises the roles of p27 in prostatecancer.
  • MORI M, MIMORI K, SHIRAISHI T, TANAKA S, UEO H, SUGIMACHI K et al.: p27 expression and gastric carcinoma. Nat. Med (1997) 3:593.
  • ESPOSITO V, BALDI A, DE LUCA A et al: Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res. (1997) 57:3381–3385.
  • FLORENES VA, MAELANDSMO GM, KERBEL RS, SLINGERLAND JM, NESLAND JM, HOLM R: Protein expression of the cell-cycle inhibitor p27Kipl in malignant melanoma: inverse correlation with disease-free survival. Am. J. Pathol (1998) 153:305–312.
  • LODA M, CUKOR B, TAM SW et al.: Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat. Med. (1997) 3:231–234.
  • MASCIULLO V, SGAMBATO A, PACILIO C et al: Frequent loss of expression of the cyclin-dependent kinase inhibitor p27 in epithelial ovarian cancer. Cancer Res. (1999) 59:3790–3794.
  • PARK KH, SEOL JY,Y00 CG et al.: Adenovirus expressing p27(Kipl) induces growth arrest of lung cancer cell lines and suppresses the growth of established lung cancer xenografts. Lung Cancer (2001) 31:149–155.
  • •Tumour-suppressive activity of p27.
  • YANG HY, SHAO R, HUNG MC, LEE MH: p27 Kipl inhibits HER2/neu-mediated cell growth and tumorigenesis. Oncogene (2001) 20:3695–3702.
  • •Tumour-suppressive activity of p27 in xenograft mouse model.
  • SHERR CJ: D-type cyclins. Trends Bine/min. Sci (1995) 20:187–190.
  • ORTEGA S, MALUMBRES M, BARBACID M: Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta. (2002) 1602:73–87.
  • WOLFEL T, HAUER M, SCHNEIDERI eta].: A pl6INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science (1995) 269:1281–1284.
  • GENG Y, EATON EN, PICON M et al: Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene (1996) 12:1173–1180.
  • MASCIULLO V, SCAMBIA G, MARONE M eta].: Altered expression of cyclin D1 and CDK4 genes in ovarian carcinomas. Int. Cancer (1997) 74:390–395.
  • ALLE KM, HENSHALL SM, FIELD AS, SUTHERLAND RL: Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin. Cancer Res (1998) 4:847–854.
  • TETSU 0, MCCORMICK F: I3-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature (1999) 398:422–426.
  • TAKANO Y, KATO Y, VAN DIEST PJ, MASUDA M, MITOMI H, OKAYASU I: Cyclin D2 overexpression and lack of p27 correlate positively and cyclin E inversely with a poor prognosis in gastric cancer cases. Am.! Pathol (2000) 156:585–594.
  • FRY DW, BEDFORD DC, HARVEY PH et al.: Cell cycle and biochemical effects of PD 0183812. A potent inhibitor of the cyclin D-dependent kinases CDK4 and CDK6../. Biol. Chem. (2001) 276:16617–16623.
  • HONMA T, HAYASHI K, AOYAMA T et al.: Structure-based generation of a new class of potent Cdk4 inhibitors: new de novo design strategy and library design. Med. Chem. (2001) 44:4615–4627.
  • SONI R, O'REILLY T, FURET P, MULLER L eta].: Selective in vivoand in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4../. Natl. Cancer Inst (2001) 93:436–446.
  • STEEG PS, ZHOU Q: Cyclins and breast cancer. Breast Cancer Res Treat (1998) 52:17–28.
  • MARONE M, SCAMBIA G, GIANNITELLI C et al.: Analysis of cyclin E and CDK2 in ovarian cancer: gene amplification and RNA overexpression. Int. Cancer (1998) 75:34–39.
  • PORTER PL, MALONE KE, HEAGERTY PJ et al: Expression of cell-cycle regulators p27Kipl and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat. Med (1997) 3:222–225.
  • MISHINA T, DOSAKA-AKITA H, HOMMURA F etal.: Cyclin E expression, a potential prognostic marker for non-small cell lung cancers. Cl/n. Cancer Res (2000) 6:11–16.
  • FUKUSE T, HIRATA T, NAIKI H, HITOMI S, WADA H: Prognostic significance of cyclin E overexpression in resected non-small cell lung cancer. Cancer Res. (2000) 60:242–244.
  • CARRANO AC, EYTAN E, HERSHKO A, PAGANO M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. (1999) 1:193–199.
  • ••Pioneering studies to characterise the rolesof Skp2 in p27 degradation.
  • LEE MH, YANG HY: Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci (2001) 58:1907–1922.
  • •Provides an in-depth review of recent studies of negative regulators of CDK and their roles in cancers.
  • SPRUCK CH, WON KA, REED SI: Deregulated cyclin E induces chromosome instability. Nature (1999) 401:297–300.
  • •A study on the role of cyclin E in chromosome instability.
  • HINCHCLIFFE EH, SLUDER G: Centrosome duplication: three kinases come up a winner! Curt: Biol. (2001) 11:R698–R701.
  • OKUDA M, HORN HF, TARAPORE P et al.: Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell (2000) 103:127–140.
  • HINCHCLIFFE EH, LI C, THOMPSON EA, MALLER JL, SLUDER G: Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science (1999) 283:851–854.
  • ADAMS PD, SELLERS WR, SHARMA SK, WU AD, NALIN CM, KAELIN WG Jr.: Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol. Cell Biol (1996) 16:6623–6633.
  • CHEN J, SAHA P, KORNBLUTH S, DYNLACHT BD, DUTTA A: Cyclin-binding motifs are essential for the function of p21CIP1. Mol. Cell Biol (1996) 16:4673–4682.
  • SHARMA SK, RAMSEY TM, CHEN YN et al.: Identification of E2F-1/Cyclin A antagonists. Bioorg. Med. Chem. Lett. (2001) 11:2449–2452.
  • LEVY DN, REFAELI Y, WEINER DB: TheVpr regulatory gene of HIV. Cum Top. Microbiol. Immunol (1995) 193:209–236.
  • BUKRINSKY M, ADZHUBEI A: Viral protein R of HIV-1. Rev Med. Virol. (1999) 9:39–49.
  • RE F, LUBAN J: HIV-1 Vpr: G2 cell cyclearrest, macrophages and nuclear transport. Frog. Cell Cycle Res (1997) 3:21–27.
  • GUMMULURU S, EMERMAN M: Cell cycle- and Vpr-mediated regulation of human immunodeficiency virus Type 1 expression in primary and transformed T cell lines. J. Virol (1999) 73:5422–5430.
  • MUTHUMANI K, ZHANG D, HWANG DS et al.: Adenovirus encoding HIV-1 Vpr activates caspase 9 and induces apoptotic cell death in both p53 positive and negative human tumour cell lines. Oncogene (2002) 21:4613–4625.
  • MUTHUMANI K, HWANG DS, DESAI BM et al.: HIV-1 Vpr induces apoptosis through caspase 9 in T cells and peripheral blood mononuclear cells. J. Biol. Chem. (2002) 277:37820–37831.
  • MAHALINGAM S, MACDONALD B, UGEN KE et al.: In vitro and in vivo tumour growth suppression by HIV-1 Vpr. DNA Cell Biol (1997) 16:137–143.
  • OKAMOTO K, BEACH D: Cyclin G is a transcriptional target of the p53 tumor suppressor protein. Embo. J. (1994) 13:4816–4822.
  • BENNIN DA, DON AS, BRAKE T et al:Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a Gl/S phase cell cycle arrest. J. Biol. Chem. (2002) 277:27449–27467.
  • OKAMOTO K, LI H, JENSEN MR et al.: Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol. Cell (2002) 9:761–771.
  • •Establishing the link between cyclin G and Mdm2 regulation.
  • CHEN X: Cyclin G: a regulator of the p53-Mdm2 network. Dev. Cell (2002) 2:518–519.
  • KIMURA SH, NOJIMA H: Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes Cells (2002) 7:869–880.
  • LENZ HJ, ANDERSON WE HALL FL, GORDON EM: Tumour site specific phase I evaluation of safety and efficacy of hepatic arterial infusion of a matrix-targeted retroviral vector bearing a dominant negative cyclin G1 construct as intervention for colorectal carcinoma metastatic to liver. Hum. Gene Ther. (2002) 13:1515–1537.
  • ••A well-written clinical protocol usingdominant negative cyclin G1 for cancer gene therapy.
  • TOPOL LZ, MARX M, LAUGIER D et al.: Identification of Drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture. Mol. Cell Biol (1997) 17:4801–4810.
  • •Characterising the regulation of Drm in transformed cells.
  • ZHANG Q, TOPOL LZ, ATHANASIOU M et al.: Cloning of the murine Drm gene (Cktsflb 1) and characterisation of its oncogene suppressible promoter. Cytogenet. Cell Genet. (2000) 89:242–251.
  • BARDOT B, LECOIN L, HUILLARD E, CALOTHY G, MARX M: Expression pattern of the drm/gremlin gene during chicken embryonic development. Mech. Dev (2001) 101:263–265.
  • CHEN B, ATHANASIOU M, GU Q, BLAIR DG: Drm/Gremlin transcriptionally activates p21(Cipl) via a novel mechanism and inhibits neoplastic transformation. Biochem. Biophys. Res. Commun. (2002) 295:1135–1141.
  • •A study on the activity of Drm in p21 induction.
  • TOPOL LZ, BARDOT B, ZHANG Q et al.: Biosynthesis, post-translation modification, and functional characterisation of Drm/Gremlin. J. Biol. Chem. (2000) 275:8785–8793.
  • CHABES A, DOMKIN V, THELANDER L: Yeast Smll, a protein inhibitor of ribonucleotide reductase. J. Biol. Chem. (1999) 274:36679–36683.
  • ELLEDGE SJ, ZHOU Z, ALLEN JB, NAVAS TA: DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays (1993) 15:333–339.
  • ZHAO X, GEORGIEVA B, CHABES A et al: Mutational and structural analyses of the ribonucleotide reductase inhibitor Smll define its Rnrl interaction domain whose inactivation allows suppression of mecl and rad53 lethality. Mol Cell Biol (2000) 20:9076–9083.
  • ZHAO X, MULLER EG, ROTHSTEIN R: A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell (1998) 2:329–340.
  • ZHAO X, CHABES A, DOMKIN V, THELANDER L, ROTHSTEIN R: The ribonucleotide reductase inhibitor Smll is a new target of the Mecl/Rad53 kinase cascade during growth and in response to DNA damage. Embo J. (2001) 20:3544–3553.
  • ZHAO X, ROTHSTEIN R: The Dunl checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Smll. Proc. Natl. Acad. Sci. USA (2002) 99:3746–3751.
  • TAYLOR SS, MCKEON F: Kinetochore localisation of murine Bubl is required for normal mitotic timing and checkpoint response to spindle damage. Cell (1997) 89:727–735.
  • CAHILL DP, LENGAUER C, YU J et al.: Mutations of mitotic checkpoint genes in human cancers. Nature (1998) 392:300–303.
  • ••A critical study on roles of Bubl in cancer.
  • CHAN GK, JABLONSKI SA, SUDAKIN V,HITTLE JC, YEN TJ: Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. Cell Biol. (1999) 146:941–954.
  • JABLONSKI SA, CHAN GK, COOKE CA, EARNSHAW WC, YEN TJ: The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma (1998) 107:386–396.
  • OUYANG B, LAN Z, MEADOWS J et al: Human Bubl: a putative spindle checkpoint kinase closely linked to cell proliferation. Cell Growth Difik (1998) 9:877–885.
  • UN SF, UN PM, YANG MC et al: Expression of hBUB1 in acute myeloid leukemia. Leak. Lymphoma (2002) 43:385–391.
  • MYRIE KA, PERCY MJ, AZIM JN, NEELEY CK, PETTY EM: Mutation and expression analysis of human BUB1 and BUB1B in aneuploid breast cancer cell lines. Cancer Lett. (2000) 152:193–199.
  • YAMAGUCHI K, OKAMI K, HIBI K, VVEHAGE SL, JEN J, SIDRANSKY D: Mutation analysis of hBUB1 in aneuploid HNSCC and lung cancer cell lines. Cancer Lett. (1999) 139:183–187.
  • RU HY, CHEN RL, LU WC, CHEN JH: hBUB1 defects in leukaemia and lymphoma cells. Oncogene (2002) 21:4673–4679.
  • WOHLSCHLEGEL JA, DWYER BT, DHARSK, CVETIC C,WALTERJC, DUTTA A: Inhibition of eukaryotic DNA replication by geminin binding to Cdtl. Science (2000) 290:2309–2312.
  • TADA S, LI A, MAIORANO D, MECHALI M, BLOW JJ: Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdtl by geminin. Nat. Cell Biol (2001) 3:107–113.
  • LYGEROU Z, NURSE P: Cell cycle. License withheld-geminin blocks DNA replication. Science (2000) 290:2271–2273.
  • MADINE M, LASKEY R: Geminin bans replication licence. Nat. Cell Biol (2001) 3:E49–E50.
  • HODGSON B, LI A, TADA S, BLOW JJ: Geminin becomes activated as an inhibitor of Cdtl/RLF-B following nuclear import. Carr: Biol. (2002) 12:678–683.
  • MCGARRY TJ, KIRSCHNER MVV:Geminin, an inhibitor of DNA replication, is degraded during mitosis. Ceil(1998) 93:1043–1053.
  • •The original study of Geminin.
  • MENDEZ J, ZOU-YANG XH, KIM SY, HIDAKA M, TANSEY WP, STILLMAN B: Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Ma Cell (2002) 9:481–491.
  • CHEESEMAN IM, BREW C, WOLYNIAK M, DESAI A, ANDERSON S, MUSTER N et al.: Implication of a novel multiprotein Dam lp complex in outer kinetochore function. Cell Biol. (2001) 155:1137–1145.
  • HOFMANN C, CHEESEMAN IM, GOODE BL, MCDONALD KL, BARNES G, DRUBIN DG: Saccharomyces cerevisiae Duni p and Damlp, novel proteins involved in mitotic spindle function. Cell Biol (1998) 143:1029–1040.
  • CHEESEMAN IM, ENQUIST-NEWMAN M, MULLER-REICHERT T, DRUBIN DG, BARNES G: Mitotic spindle integrity and kinetochore function linked by the Duolp/Damlp complex. I Cell Biol. (2001) 152:197–212.
  • ENQUIST-NEWMAN M, CHEESEMAN IM, VAN GOOR D, DRUBIN DG, MELUH PB, BARNES G: Dad lp, third component of the Duo lp/ Damlp complex involved in kinetochore function and mitotic spindle integrity. MoL Biol. Cell(2001) 12:2601–2613.
  • LI Y, BACHANT J, ALCASABAS AA, WANG Y, QIN J, ELLEDGE SJ: The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev (2002) 16:183–197.
  • MAUCUER A, CAMONISJH, SOBEL A: Stathmin interaction with a putative kinase and coiled-coil-forming protein domains. Proc Natl. Acad. Sci. USA (1995) 92:3100–3104.
  • MAUCUER A, OZON S, MANCEAU V et al.: KIS is a protein kinase with an RNA recognition motif. Biol. Chem. (1997) 272:23151–23156.
  • MAUCUER A, LE CAER JP, MANCEAU V, SOBEL A: Specific Ser-Pro phosphorylation by the RNA-recognition motif containing kinase KIS. Eur. I Biochem. (2000) 267:4456–4464.
  • BOEHM M, YOSHIMOTO T, CROOK MF et al: A growth factor-dependent nuclear kinase phosphorylates p27 (Kipl) and regulates cell cycle progression. Et/7h°' (2002) 21:3390–3401.
  • ••Characterises the role of hKIS in p27sub-cellular localisation.
  • MCEACHERN MJ, KRAUSKOPF A, BLACKBURN EH: Telomeres and their control. Ann. Rev Genet. (2000) 34:331–358.
  • KIM NW, PIATYSZEK MA, PROWSE KR et al.: Specific association of human telomerase activity with immortal cells and cancer. Science (1994) 266:2011–2015.
  • MEYERSON M: Role of telomerase in normal and cancer cells. J. Clin. Oncol (2000) 18:2626–2634.
  • SHAY JW, WRIGHT WE: Telomeres and telomerase: implications for cancer and aging. Radiat. Res. (2001) 155:188–193.
  • FENG J, FUNK WD, WANG SS et al: The RNA component of human telomerase. Science (1995) 269:1236–1241.
  • HARRINGTON L, ZHOU W, MCPHAIL T et al.: Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev (1997) 11:3109–3115.
  • HARRINGTON L, MCPHAIL T, MAR V et al: A mammalian telomerase-associated protein. Science (1997) 275:973–977.
  • NAKAYAMA J, SAITO M, NAKAMURA H, MATSUURA A, ISHIKAWA F: TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell (1997) 88:875–884.
  • LIU Y, SNOW BE, HANDE MP et al.: Telomerase-associated protein TEP1 is not essential for telomerase activity or telomere length maintenance in vivo. Mol Cell Biol (2000) 20:8178–8184.
  • NAKAMURA TM, MORIN GB, CHAPMAN KB et al.: Telomerase catalytic subunit homologues from fission yeast and human. Science (1997) 277:955–959.
  • MEYERSON M, COUNTER CM, EATON EN et al: hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell (1997) 90:785–795.
  • HORIKAWA I, CABLE PL, AFSHARI C, BARRETT JC: Cloning and characterisation of the promoter region of human telomerase reverse transcriptase gene. Cancer Res. (1999) 59:826–830.
  • TAKAKURA M, KYO S, KANAYA T et al: Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalised and cancer cells. Cancer Res. (1999) 59:551–557.
  • DAMM K, HEMMANN U, GARIN-CHESA P et al.: A highly selective telomerase inhibitor limiting human cancer cell proliferation. Embof (2001) 20:6958–6968.
  • HAHN WC, STEWART SA, BROOKS MW et al: Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. (1999) 5:1164–1170.
  • HUANG X, UN T, GU J et al.: Combined TRAIL and Bax gene therapy prolonged survival in mice with ovarian cancer xenograft. Gene Ther. (2002) 9:1379–1386.
  • HOCHSTRASSER M: Ubiquitin-dependent protein degradation. Ann. Rev Genet. (1996) 30:405–439.
  • LAM YA, XU W, DEMARTINO GN, COHEN RE: Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature (1997) 385:737–740.
  • CARRANO AC, EYTAN E, HERSHKO A, PAGANO M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. (1999) 1:193–199.
  • ••A critical study on the role of Skp2 in p27degradation.
  • SUTTERLUTY H, CHATELAIN E, MARTI A et al.: p45SKP2 promotes p27Kipl degradation and induces S phase in quiescent cells. Nat. Cell Biol. (1999) 1:207–214.
  • ••A critical study on the role of Skp2 in p27degradation.
  • TSVETKOV LM, YEH KH, LEE SJ, SUN H, ZHANG H: p27(Kipl) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curt: Biol. (1999) 9:661–664.
  • DIEHL JA, ZINDY F, SHERR CJ: Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev (1997) 11:957–972.
  • CLURMAN BE, SHEAFF RJ, THRESS K, GROUDINE M, ROBERTS JM: Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by CDK2 binding and cyclin phosphorylation. Genes Dev (1996) 10: 1979-1990.
  • STROHMAIER H, SPRUCK CH, KAISER P, WON KA, SANGFELT 0, REED SI: Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature (2001) 413:316–322.
  • ••Important study on the characterisation ofF-box protein for cyclin E.
  • MOBERG KH, BELL DW, WAHRER DC, HABER DA, HARIHARAN IK: Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature (2001) 413:311–316.
  • KOEPP DM, SCHAEFER LK, YE X et al:128. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science (2001) 294:173–177.
  • LATRES E, CHIARLE R, SCHULMAN BA 129. et al.: Role of the F-box protein Skp2 in lymphomagenesis. Proc. Nati Acad. Sci. USA (2001) 98:2515–2520.
  • GSTAIGER M, JORDAN R, LIM M et al.: Skp2 is oncogenic and overexpressed in130.human cancers. Proc. Natl. Acad. Sci. USA(2001) 98:5043–5048.
  • SPRUCK CH, STROHMAIER H, SANGFELT 0 et al.: hCDC4 gene mutations in endometrial cancer. Cancer Res.131.(2002) 62:4535-4539.
  • ZHANG H, KOBAYASHI R, GALAKTIONOV K, BEACH D: pl9Skpl and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell (1995)132.82:915–925.
  • TANGY, YU J, FIELD J: Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Ma Cell Biol. (1999) 19:1881-1891.133.
  • KNAUS UG,BOKOCH GM: The p21Rac/ Cdc42-activated kinases (PAKs). Int. J. Biochem. Cell Biol.. (1998) 30:857–862.
  • LU W, MAYER BJ: Mechanism of activation of Pakl kinase by membrane localization. Oncogene (1999) 18:797–806.
  • SELLS MA, BOYD JT, CHERNOFF J: p21-activated kinase 1 (Pakl) regulates cell motility in mammalian fibroblasts.' Cell Biol. (1999) 145:837–849.
  • VADLAMUDI RK, ADAM L, WANG RA et al: Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organisation of mitotic spindles in human epithelial breast cancer cells. J. Biol. Chem. (2000) 275:36238–36244.
  • KUMAR R, VADLAMUDI RK: Emerging functions of p21-activated kinases in human cancer cells. Cell Physioi (2002) 193:133–144.
  • KING CC, GARDINER EM, ZENKE FT et al: p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). Biel Chem. (2000)275:41201–41209.
  • PAPAKONSTANTI EA, STOURNARAS C: Association of PI-3 Kinase with PAK1 leads to actin phosphorylation and cytoskeletal reorganization. Mo/. Biol. Cell(2002) 13:2946–962.
  • ••Important study on the characterisation of•F-box protein for cydin E.
  • ••important study on the characterisation ot•F-box protein for cydin E.
  • HABETS GG, VAN DER KAMMEN RA, STAM JC, MICHIELS F, COLLARD JG: Sequence of the human invasion-inducing TIAM1 gene, its conservation in evolution
  • •• and its expression in tumour cell lines of different tissue origin. Oncogene (1995) 10:1371–1376.
  • KARNOUB AE, WORTHYLAKE DK, ROSSMAN KL et al.: Molecular basis for Rac 1 recognition by guanine nucleotide exchange factors. Nat. Strati. Biol. (2001) 8:1037–1041.
  • VAN LEEUVVEN FN, VAN DER KAMMEN RA, HABETS GG, COLLARD JG: Oncogenic activity of Tiaml and Racl in NIH3T3 cells. Oncogene (1995) 11:2215–2221.
  • TIGANIS T, KEMP BE, TONKS NK: The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. Biol. Chem. (1999) 274:27768–27775.
  • IBARRA-SANCHEZ MJ, SIMONCIC PD, NESTEL FR, DUPLAY P, LAPP WS, TREMBLAY ML: The T-cell protein tyrosine phosphatase. Semin. Immunol (2000) 12:379–386.
  • KLINGLER-HOFFMANN M, FODERO-TAVOLETTI MT, MISHIMA K et al.: The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. I. Biol. Chem. (2001) 276:46313–46318.
  • •Interesting observation about the tumour-suppressive activity of TC-PTP.
  • SIMONCIC PD, LEE-LOY A, BARBER DL, TREMBLAY ML, MCGLADE CJ: The T cell protein tyrosine phosphatase is a negative regulator of jams family kinases 1 and 3. Cum Biol. (2002) 12:446–453.
  • YAMAMOTO T, SEKINE Y, KASHIMA K et al.: The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem. Biophys. Res. Commun. (2002) 297:811.
  • SHILOH Y: ATM and ATR: networking cellular responses to DNA damage. Curt: Opin. Genet. Dev. (2001) 11:71–77.
  • TIBBETTS RS, BRUMBAUGH KM, WILLIAMS JM et al.: A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev (1999) 13:152–157.
  • BANIN S, MOYAL L, SHIEH S et al: Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science (1998) 281: 1674-1677.
  • AHN JY, SCHWARZ JK, PIWNICA-WORMS H, CANMAN CE: Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res. (2000) 60:5934–5936.
  • LIU Q, GUNTUKU S, CUT XS et aL: Chkl is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev (2000) 14:1448–1459.
  • MATSUOKA S, ROTMAN G, OGAWA A, SHILOH Y, TAMAI K, ELLEDGE SJ: Ataxia telangiectasia-mutated phosphorylates Chk2 M vivo and M vitro. Proc. Nati Acad. Sci. USA (2000) 97:10389–10394.
  • SANCHEZ Y, WONG C, THOMA RS et al.: Conservation of the Chkl checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science (1997) 277:1497–1501.
  • KUMAGAI A, YAKOWEC PS, DUNPHY WG: 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Ma Biol. Cell (1998) 9:345–354.
  • KUMAGAI A, DUNPHY WG: Binding of 14-3-3 proteins and nuclear export control the intracellular localisation of the mitotic inducer Cdc25. Genes Dev (1999) 13:1067–1072.
  • LOPEZ-GIRONA A, FURNARI B, MONDESERT 0, RUSSELL P: Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature (1999) 397:172–175.
  • YANG J, WINKLER K, YOSHIDA M, KORNBLUTH S: Maintenance of G2 arrest in the Xenopus ooryte: a role for 14-3-3-mediated inhibition of cdc25 nuclear import. Embo J. (1999) 18:2174–2183.
  • BELL DW, VARLEY JM, SZYDLO TE et al.: Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science (1999) 286:2528–2531.
  • ••Important observations suggest thathCHK2 is a tumour suppressor gene.
  • HIRAO A, CHEUNG A, DUNCAN G et al: Chk2 is a tumour suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Bioi (2002) 22:6521–6532.
  • MCGOWAN CH: Checking in on Cdsl (CHK2): a checkpoint kinase and tumour suppressor. Bioessays (2002) 24:502–511.
  • HIRAO A, KONG YY, MATSUOKA S et al.: DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science (2000) 287: 1824-1827.
  • TAKAI H, NAKA K, OKADA Y et al.: Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. Embo J. (2002) 21:5195–5205.
  • CHEHAB NH, MALIKZAY A, APPEL M, HALAZONETIS TD: Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilising p53. Genes Dev. (2000) 14:278–288.
  • HAPKE G, YIN MB, RUSTUM YM: Targeting molecular signals in Chkl pathways as a new approach for overcoming drug resistance. Cancer Metastasis Rev (2001) 20:109–115.
  • CHEN P, LUO C, DENG Y, RYAN K et al: The 1.7 A crystal structure of human cell cycle checkpoint kinase Chkl: implications for Chkl regulation. Cell (2000) 100:681–692.
  • BUSBY EC, LEISTRITZ DF, ABRAHAM RT, KARNITZ LM, SARKARIA JN: The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChkl. Cancer Res. (2000) 60:2108–2112.
  • GRAVES PR, YU L, SCHWARZ JK et al.: The Chkl protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. j Biol. Chem. (2000) 275:5600–5605.
  • JACKSON JR, GILMARTIN A, IMBURGIA C, WINKLER JD, MARSHALL LA, ROSHAK A: An indolocarbazole inhibitor of human checkpoint kinase (Chkl) abrogates cell cycle arrest caused by DNA damage. Cancer Res. (2000) 60:566–572.
  • ZHAO B, BOWER MJ, MCDEVITT PJ et al.: Structural basis for Chkl inhibition by UCN-01. j Biol. Chem. (2002) 277:46609–46615.
  • ZUO Z, DEAN NM, HONKANEN RE: Serine/threonine protein phosphatase Type 5 acts upstream of p53 to regulate the induction of p21(WAF1/Cipl) and mediate growth arrest. Biol. Chem. (1998) 273:12250–12258.
  • •An observation about inhibition of PP5 and antiproliferative activity.
  • HONKANEN RE, GOLDEN T: Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curc Med. Chem. (2002) 9:2055–2075.
  • DEAN DA, URBAN G, ARAGON IV et al: Serine/threonine protein phosphatase 5 (PPS) participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling. BMC Cell Biol. (2001) 2:6.
  • ZUO Z, URBAN G, SCAMMELL JG et at Ser/Thr protein phosphatase Type 5 (PP 5) is a negative regulator of glucocorticoid receptor-mediated growth arrest. Biochemistry (1999) 38:8849–8857.
  • URBAN G, GOLDEN T, ARAGON IV, SCAMMELL JG, DEAN NM, HONKANEN RE: Identification of an estrogen-inducible phosphatase (PP5) that converts MCF-7 human breast carcinoma cells into an estrogen-independent phenotype when expressed constitutively. Biol. Chem. (2001) 276:27638–27646.
  • BROWN EJ, FRAZIER WA: Integrin-associated protein (CD47) and its ligands. Trends Cell Biol (2001) 11:130–135.
  • MATEO V, LAGNEAUX L, BRON D et al.: CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat. Med. (1999) 5:1277–1284.
  • QUELLE DE, ZINDY F, ASHMUN RA, SHERR CJ: Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell (1995) 83:993–1000.
  • ••A study on the original characterisation ofp19 ARF from Ink4a locus.
  • LLOYD AC: p53: only ARF the story. Nat. Cell Biol (2000) 2:E48–E50.
  • SHARPLESS NE, DEPINHO RA: The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev (1999) 9:22–30.
  • SERRANO M, HANNON GJ, BEACH D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature (1993) 366:704–707.
  • ZHANG Y, XIONG Y, YARBROUGH WG: ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Ce//(1998) 92:725–734.
  • •An important study on the roles of ARF in regulating p53 stability.
  • TAO W, LEVINE AJ: P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. USA (1999) 96:6937–6941.
  • SHERR CJ, WEBER JD: The ARF/p53 pathway. Curr. Opin. Genet. Dev (2000) 10:94–99.
  • WEBER JD, KUO ML, BOTHNER Bet al.: Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell Biol. (2000) 20:2517–2528.
  • NOBORI T, MIURA K, WU DJ, LOIS A, TAKABAYASHI K, CARSON DA: Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature (1994) 368:753–756.
  • KAMB A, GRUIS NA, WEAVER-FELDHAUS J et al.: A cell cycle regulator potentially involved in genesis of many tumor types. Science (1994) 264:436–440.
  • KAMB A: Cell-cycle regulators and cancer. Trends Genet. (1995) 11:136–140.
  • CAIRNS P, POLASCIK TJ, EBY Y et al.: Frequency of homozygous deletion at p16/ CDKN2 in primary human tumours. Nat. Genet. (1995) 11:210–212.
  • DE STANCHINA E, MCCURRACH ME, ZINDY F et al.: ElA signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. (1998) 12:2434–2442.
  • ZINDY F, EISCHEN CM, RANDLE DH et al.: Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev (1998) 12:2424–2433.
  • KAMIJO T, ZINDY F, ROUSSEL MF et al: Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p 19ARF. Cell (1997) 91:649–659.
  • •Important studies about p19ARF knockout.
  • KAMIJO T, BODNER S, VAN DE KAMP E, RANDLE DH, SHERR CJ: Tumor spectrum in ARF-deficient mice. Cancer Res. (1999) 59:2217–2222.
  • YANG CT, YOU L, YEH CC et al.: Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells. Natl. Cancer Inst. (2000) 92:636–641.
  • DENG X, KIM M, VANDIER D et al.: Recombinant adenovirus-mediated p14(ARF) overexpression sensitizes human breast cancer cells to cisplatin. Biochem. Biophys. Res. Commun. (2002) 296:792–798.
  • TURENCHALK GS, ST JOHN MA, TAO W, XU T: The role of lats in cell cycle regulation and tumorigenesis. Biochim. Biophys. Acta. (1999) 1424:M9–M16.
  • ST JOHN MA, TAO W, FEI X et al.: Mice deficient of Latsl develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat. Genet. (1999) 21:182–186.
  • ••A critical report about Latsl gene knockoutstudies.
  • TAO W, ZHANG S, TURENCHALK GS et al.: Human homologue of the Drosophila melanogaster lats tumour suppressor modulates Cdc2 activity. Nat. Genet. (1999) 21:177–181.
  • ••Identifying Latsl as a novel negativeregulator of Cdc2/cydin A.
  • XIA H, QI H, LI Yet al: LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene (2002) 21:1233–1241.
  • YANG X, LI DM, CHEN W, XU T: Human homologue of Drosophila lats, LATS1, negatively regulate growth by inducing G(2)IM arrest or apoptosis. Oncogene (2001) 20:6516–6523.
  • HISAOKA M, TANAKA A, HASHIMOTO H: Molecular alterations of h-warts/LATS1 tumor suppressor in human soft tissue sarcoma. Lab Invest. (2002) 82:1427–1435.
  • DAVIES R, MOORE A, SCHEDL A et al.: Multiple roles for the Wilms' tumor suppressor, WT1. Cancer Res. (1999) 59:1747s–1750s.
  • LEE SB, HABER DA: Wilms tumor and the WT1 gene. Exp. Cell Res. (2001) 264:74–99.
  • INOUE K, OGAWA H, SONODA Y et al: Aberrant overexpression of the Wilms tumor gene (WTI) in human leukemia. Blood (1997) 89:1405–1412.
  • SUGIYAMA H: Wilms tumor gene (WT1) as a new marker for the detection of minimal residual disease in leukemia. Leak. Lymphoma (1998) 30:55–61.
  • LOEB DM, EVRON E, PATEL CB et al.: Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res. (2001) 61:21–925.
  • LOEB DM, SUKUMAR S: The role of WT1 in oncogenesis: tumor suppressor or oncogene? Intl Hematol. (2002) 76:117–126.
  • •An interesting review about the role of WT1 in turnourigenesis.
  • SUGIYAMA H: Cancer immunotherapy targeting WT1 protein. hat. Hematoi (2002) 76:127–132.
  • YAMAGAMI T, OGAWA H, TAMAKI H et al.: Suppression of Wilms' tumor gene Ti) expression induces G2/M arrest in leukemic cells. Leak. Res. (1998) 22:383–384.
  • OKA Y, ISUBOI A, ELISSEEVA OA, UDAKA K, SUGIYAMA H: WT1 as a novel target antigen for cancer immunotherapy. Curr. Cancer Drug Targets. (2002) 2:45–54.
  • OZAKI K, NAGATA M, SUZUKI M et al.:221.Isolation and characterization of a novel human pancreas-specific gene, pancpin, that is down-regulated in pancreatic cancer cells. Genes222.Chromosomes Cancer (1998) 22:179–185.
  • SAMPATH D, VVINNEKER RC, ZHANG Z: Cyr61, a member of the CCN family, is required223.for MCF-7 cell proliferation: regulation by 1713-estradiol and overexpression in human breast cancer. Endocrinology(2001)224.142: 2540–2548.
  • TONG X, XIE D, O'KELLY J, MILLER CW, MULLER-TIDOW C, KOEFFLER HP: Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. Biol. Chem. (2001) 276:47709–47714.
  • •Interesting observation about the tumour-suppressive activity of Cyr61.
  • SAMPATH D, WINNEKER RC, ZHANG Z: The angiogenic factor Cyr61 is induced by the progestin R5020 and is necessary for mammary adenocarcinoma cell growth. Endocrine (2002) 18:147–159.
  • TSAI MS, BOGART DF, LIP, MEHMI I, LUPU R: Expression and regulation of Cyr61 in human breast cancer cell lines. Oncogene (2002) 21:964–973.
  • XIE D, MILLER CW, O'KELLYJ et at Breast cancer. Cyr61 is overexpressed, estrogen-inducible, and associated with more advanced disease. J. Biol Chem. (2001) 276:14187–14194.
  • GRZESZKIEWICZ TM, KIRSCHLING DJ, CHEN N, LAU LF: CYR61 stimulates human skin fibroblast migration through Integrin a‘135 and enhances mitogenesis through integrin avi33, independent of its carboxyl-terminal domain. Biol Chem. (2001) 276:21943–21950.
  • ELLIOTT MJ, FARMER MR, ATIENZA C et al.: E2F-1 gene therapy induces apoptosis and increases chemosensitivity in human pancreatic carcinoma cells. Tumour Biol. (2002) 23:76–86.
  • CHENE P: p53 as a drug target in cancer therapy. Expert Opin. Ther. Patents (2001) 11:23–935.
  • NIELSEN LL, MANEVAL DC: p53 tumor suppressor gene therapy for cancer. Cancer Gene The]: (1998) 5:52–63.
  • SWISHER SG, ROTH JA: p53 Gene therapy for lung cancer. Cum Oncol Rep. (2002) 4:334–340.
  • ROTH JA, SWISHER SG, MEYN RE: p53 tumor suppressor gene therapy for cancer. Oncology (Ilentingt) (1999) 13:148-154. ELLIOTT PJ, ROSS JS: The proteasome: a new target for novel drug therapies. Am. Clin. Pathol (2001) 116:637-646. ADAMS J: Proteasome inhibitors as new anticancer drugs. Cum Opin. Oncol. (2002) 14:628–634.
  • MURRAY RZ, NORBURY C: Proteasome inhibitors as anti-cancer agents. Anti-Cancer Drugs. (2000) 11:407–417.
  • MYUNG J, KIM KB, CREWS CM: The ubiquitin-proteasome pathway and proteasome inhibitors. Med. Res. Rev (2001) 21:245–273.
  • ADAMS J: Proteasome inhibitors as therapeutic agents. Exp. Opin. Ther. Patents (2003) 13:45–57.
  • ZHAI S, SENDEROWICZ AM, SAUSVILLE EA, FIGG WD: Flavopiridol, a novel cyclin-dependent kinase inhibitor, in clinical development. Ann. Pharmacother (2002) 36:905–911.
  • SENDEROWICZ AM: Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs (1999) 17:313–320.
  • MARKS PA, RICHON VM, BRESLOW R, RIFKIND RA: Histone deacetylase inhibitors as new cancer drugs. Cum Opin. Oncol (2001) 13:477–483.
  • VIGUSHIN DM, COOMBES RC: Histone deacetylase inhibitors in cancer treatment. Anti-Cancer Drugs (2002) 13:1–13.
  • JOHNSTONE RW: Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev Drug Discov (2002) 1:287–299.
  • ADAMS J: Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Cum Opin. Chem. Biol. (2002) 6:493–500.
  • SUN J, NAM S, LEE CS, LI Betel: CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice. Cancer Res (2001) 61:1280–1284.
  • HIDESHIMA T, RICHARDSON P, CHAUHAN D et al.: The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. (2001) 61:3071–3076.
  • IMANISHI R, OHTSURU A, NVAMATSU M et al.: A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy. Clin. Endocrinol Metab. (2002) 87:4821-4824.222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.