80
Views
1
CrossRef citations to date
0
Altmetric
Review

Intracellular calcium channels and their modulators

Pages 815-850 | Published online: 02 Mar 2005

Bibliography

  • HEILBRUNN LV, WIERCINSKI F J: The action of various cations on muscle protoplasm. Cellular Comp. Physiol. (1947) 29:15–32.
  • PEACHEY LD: Transverse tubules in excitation-contraction coupling. Fed. Proc. (1965) 24(5):1124–1134.
  • HASSELBACH W, MAKINOSE M: Die calcium pumpe der 'erschlaffungsgrana 'des muskles und ihre abhangigkeit von der ATP-spaltung. Biochem. Z(1961) 333:518–528.
  • EBASHI S, LIPMANN F: Adenosine-triphosphate-linked concentration of calcium ions in a particular fraction of rabbit muscle. J. Cell Biol. (1962) 14:389–400.
  • LEE KS: Effect of electrical stimulation on uptake and release of calcium by the endoplasmic reticulum. Nature (1965) 207(992):85–86.
  • LEE KS, LADINSKY H, CHOI SJ, KASUYA Y: Studies on the M vitro interaction of electrical stimulation and Ca2+ movement in sarcoplasmic reticulum. .1 Gen. Physiol. (1966) 49(4):689–715.
  • WINEGRAD S: Role of intracellular calcium movements in excitation-contraction coupling in skeletal muscle. Fed. Proc. (1965) 24(5):1146–1152.
  • JOBSIS FF, O'CONNOR MJ: Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. (1966) 25(2):246–252.
  • KATZ AM, REPKE DI: Control of myocardial contraction: the sensitivity of cardiac actomyosin to calcium ion. Science (1966) 152(726):1242–1243.
  • EBASHI S, EBASHI F, KODAMA A: Troponin as the Ca2+ -receptive protein in the contractile system. Biochem. (Tokyo) (1967) 62(1):137–138.
  • DESMEDT JE, HAINAUT K: Excitation-contraction coupling in single muscle fibers and the calcium channel in sarcoplasmic reticulum. Ann. NY Acad. Sci. (1978) 307:433–435.
  • YAMAMOTO N, KASAI M: Mechanism and function of the Ca2±-gated cation channel in sarcoplasmic reticulum vesicles. Biochem. (Tokyo) (1982) 92(2):485–496.
  • FRANZINI-ARMSTRONG C: Studies of the triad. I. Structure of the junction in frog twitch fibers. Cell Biol. (1970) 47:488–499.
  • VOLPE P, KRAUSE KH, HASHIMOTO S, ZORZATO F eta/...`Calciosome', a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of non-muscle cells? Pim Nat. Acad. Sti. USA (1988) 85(4):1091–1095.
  • POZZAN T, VOLPE P, ZORZATO F, RAVIN M et al.:The Ins(1,4,5)P3 -sensitive Ca2±store of non-muscle cells: endoplasmic reticulum or calciosomes? J. Exp. Biol. (1988) 139:181–193.
  • KENDALL JM, RMERRL, CAMPBELL AK: Targeting aequorin to the endoplasmic reticulum of living cells. Biochem. Biophys. Res. Comm. (1992) 189(2):1008–1016.
  • MELD OLESI J, POZZAN T: The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem. Sci. (1998) 23(1):10–14.
  • BRINI M, CARAFOLI E: Calcium signalling: a historical account, recent developments and future perspectives. Cell Mol. Life Sci. (2000) 57(3):354–370.
  • DE MEIS L, HASSELBACH W, MACHADO RD: Characterization of calcium oxalate and calcium phosphate deposits in sarcoplasmic reticulum vesicles. Cell Biol. (1974) 62(2):505–509.
  • MENG XJ, TIMMER RT, GUNN RB, ABERCROMBIE RF: Separate entry pathways for phosphate and oxalate in rat brain microsomes. Am. j Physiol. Cell Physiol. (2000) 278(6):C1183–C1190.
  • LAVER DR, LENZ GK, DULHUNTY AF: Phosphate ion channels in sarcoplasmic reticulum of rabbit skeletal muscle. J. Physiol. (2001) 535(Pt 3):715–728.
  • TAKESHIMA H, NISHIMURA S, MATSUMOTO T et al: Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature (1989) 339(6224):439–445.
  • ZORZATO F, FUJII J, OTSU K, PHILLIPS M: Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. Biol. Chem. (1990) 265(4):2244–2256.
  • TUN WELL RE, WICKENDEN C, BERTRAND BM et al.: The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem. J. (1996) 318(Pt 2):477–487.
  • DU GG, SANDHU B, KHANNA VK, GUO XH, MACLENNAN DH: Topology of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyR1). Proc. Nati Acad. Sci. USA (2002) 99(26):16725–16730.
  • BOEHNING D, MAK D-OD, FOSKETT JK, JOSEPH SK: Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2+ channels. J. Biol. Chem. (2001) 276:13509–13512.
  • BEZPROZVANNY I, BEZPROZVANNAYA S, EHRLICH BE: Caffeine-induced inhibition of inositol(1,4,5)-trisphosphate-gated calcium channels from cerebellum. Ma Biol Cell (1994) 5(1):97–103.
  • BEZPROZVANNY TB, ONDRIAS K, KAFTAN E et al: Activation of the calcium release channel (ryanodine receptor) by heparin and other polyanions is calcium dependent. Mol.Biol. Cell (1993) 4(3):347–352.
  • EHRLICH BE, KAFTAN E, BEZPROZVANNAYA S, BEZPROZVANNY I: The pharmacology of intracellular Ca2+-release channels. Trends Phannacol Sci. (1994) 15(5):145–149.
  • TAYLOR CW, TRAYNOR D: Calcium and inositol trisphosphate receptors. Membr: Biol. (1995) 145(2):109–118.
  • FABIATO A, FABIATO F: Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. Physiol. (1975) 249(3):469–495.
  • FABIATO A, FABIATO F: Use of chlorotetracycline fluorescence to demonstrate Ca2±-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature (1979) 281(5727):146–148.
  • FABIATO A: Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am.Physiol (1983) 245(1):C1–C14.
  • KOCHEGAROV AA, BEYLINA SI, MATVEEVA NB, ZINCHENKO VP: Effects of Ca2+ -ATPase inhibitors, ionomycin, and pharmacological modulators of ryanodine receptor on calcium release from intracellular pools and on oscillatory contractile behavior in Physarum polycephalum. Biochemistry (Russian) (2000) 65(6):779–789.
  • KOCHEGAROV AA, BEYLINA SI, MAT VEEVA NB, ZINCHENKO VP: Ionomycin and 2,5-di(tertbuty1)-1,4,-enzohydroquinone elicit Ca2+-induced Ca2+ release from intracellular pools in Physamm polycephalum. Comp. Biochem. Physiol. (2001) 128:279–288.
  • ANTARAMIAN A, BUTANDA- OCHOA A, VAZQUEZ-MARTINEZ O et al.: Functional expression of recombinant Type 1 ryanodine receptor in insect cells. Cell Calcium (2001) 30(1):9–17.
  • BASTIDE B, MOUNTER Y: Single-channel properties of the sarcoplasmic reticulum calcium-release channel in slow- and fast-twitch muscles of Rhesus monkeys. Pflugers Arch.1\1. Eur.j Physiol. (1998) 436(3):485–488.
  • TRIPATHY A, XU L, MANN G, MEISSNER G: CaM activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys. (1995) 69:106–119.
  • FAIRHURST AS, JENDEN DJ: The distribution of a ryanodine-sensitive calcium pump in skeletal muscle fractions. Physiol. (1966) 67(2):233–238.
  • PESSAH IN, WATERHOUSE AL, CASIDA JE: The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem. Biophys. Res. Comm. (1985) 128:449–456.
  • CAMPBELL KP, KNUDSON CM, IMAGAWA T, LEUNG AT, SUTKO JL: Identification and characterization of the high affinity [31-]-ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J. Biol.Chem. (1987)
  • MORRISSETTE J, XU L, NELSON A, MEISSNER G, BLOCK BA: Characterization of RyR1-slow, a ryanodine receptor specific to slow-twitch skeletal muscle. Am. .1. Physiol. Regal. Integr: Comp. Physiol. (2000) 279(5):R1889–R1898.
  • WAGENKNECHT T, RADERMACHER M: Three-dimensional architecture of the skeletal muscle ryanodine receptor. FEBS Lett. (1995) 369:43–46.
  • SERYSHEVA II, ORLOVA EV, CHIU W, SHERMAN MB: Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nat. Struct. Biol (1995) 2:18–24.
  • GRUNWALD R. MEISSNER G: Lumenal sites and C terminus accessibility of the skeletal muscle calcium release channel (ryanodine receptor). " Biol. Chem (1995) 270:11338–11347.
  • LAI FA, ERICKSON HP, ROUSSEAU E, LIU QY, MEISSNER G: Purification and reconstitution of the calcium release channel from skeletal muscle. Nature (London) (1988) 331:315–319.
  • ORLOVA EV, SERYSHEVA II, VAN HEEL M, HAMILTON SL: Two structural configurations of the skeletal muscle calcium release channel. Nature Struct. Biol. (1996) 3(6):547–552.
  • WAGENKNECHT T, SAMSO M: Three-dimensional reconstruction of ryanodine receptors. Front. Biosci. (2002) 7:d1464–d1474.
  • SMITH JS, IMAGAWA T, MA J, FILL M et al.: Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. Gen. Physiol. (1988) 92:1–26.
  • LINDSAY AR, WILLIAMS AJ: Functional characterization of the ryanodine receptor purified from sheep cardiac muscle sarcoplasmic reticulum. Biochim. Biophys. Acta (1991) 1064:89–102.
  • MARKS AR, FLEISCHER S, TEMPST P: Surface topography analysis of the ryanodine receptor/junctional channel complex based on proteolysis sensitivity mapping. " Biol. Chem. (1990) 265(22):13143–13149.
  • WILLIAMS AJ, WEST DJ, SITSAPESAN R: Light at the end of the Ca(2+)-release channel tunnel: structures and mechanisms involved in ion translocation in ryanodine receptor channels. Quarterly Reviews of Biophysics (2001) 34(1):61–104.
  • ARMSTRONG CM, BEZANILLA FM, HOROWICZ P: Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N,N-tetracetic acid. Biochim. Biophys. Acta (1972) 267:605–608.
  • RIOS E, MA J, GONZALEZ A: The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. Muscle Res. Cell Moth. (1991) 12:127–135.
  • MEISSNER G, LU X. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Biosci. Rep. (1995) 15(5):399–408.
  • BLOCK BA, IMAGAWA T, CAMPBELL KP, FRANZINI-ARMSTRONG C: Structural evidence for direct interaction between the molecular components of the transverse tubule/ sarcoplasmic reticulum junction in skeletal muscle.' all. Bid (1988) 107:2587–2600.
  • MARTY I, ROBERT M, VILLAZ M, DE JONGH KS et al.: Biochemical evidence for a complex involving dihydropyridine receptor and ryanodine receptor in triad junctions of skeletal muscle. Proc. Nati Acad. Ser. USA (1994) 91:2270–2274.
  • FRANZINI-ARMSTRONG C, PROTASI F, RAMESH V: Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Annal. NY Acad. Sci. (1998) 853:20–30.
  • PROTASI F, FRANZINI-ARMSTRONG C, ALLEN PD: Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle.' Cell Biol. (1998) 140(4):831–842.
  • NAKAI J, SEKIGUCHI N, RANDO TA, ALLEN PD, BEAM KG: Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. " Biol. Chem. (1998) 273(22):13403–13406.
  • GURROLA GB, AREVALO C, SREEKUMAR R et al.: Activation of ryanodine receptors by imperatwdn A and a peptide segment of the II - III loop of the dihydropyridine receptor. j. Biol. Chem. (1999) 274(12):7879–7886.
  • YAMAZAWA T, TAKESHIMA H, SHIMUTA M, IINO M: A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. " Biol. Chem. (1997) 272(13):8161–8164.
  • LU X, XU L, MEISSNER G: Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J. Bia Chem. (1994) 269(9):6511–6516.
  • LU X, XU L, MEISSNER G: Phosphorylation of dihydropyridine receptor II - III loop peptide regulates skeletal muscle calcium release channel function. Evidence for an essential role of the 13-0H group of Ser687. Biol. Chem. (1995) 270(31):18459–18464.
  • EL-HAYEK R, ANTONIU B, WANG J, HAMILTON SL, IKEMOTO N: Identification of calcium release-triggering and blocking regions of the II - III loop of the skeletal muscle dihydropyridine receptor. J. Biol. Chem. (1995) 270(38):22116–22118.
  • LAMB GD, EL-HAYEK R, IKEMOTO N, STEPHENSON DG: Effects of dihydropyridine receptor II - III loop peptides on Ca2±release in skinned skeletal muscle fibers. Am.Cell Myst& (2000) 279(4):C891–C905.
  • STANGE M, TRIPATHY A, MEISSNER G: Two domains in dihydropyridine receptor activate the skeletal muscle Ca2+release channel. Biophys. (2001) 81(3):1419–1429.
  • SENCER S, PAPINENI RVL, HALLING DB, PATE Pet al.: Coupling of RyR1 and L-type calcium channels via CaM binding domains. " Biol. Chem. (2001) 276:38237–38241.
  • PAPINENI RV, O'CONNELL KM, ZHANGH, DIRKSEN RT, HAMILTON SL: Suramin interacts with the calmodulin binding site on the ryanodine receptor, RyR1. I. Biol. Chem. (2002) 277(51):4916–49174.
  • NÁBAUER M, CALLEWAERT G, CLEEMANN L, MORAD M: Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science (1989) 244:800–803.
  • CALLEWAERT G: Excitation-contraction coupling in mammalian cardiac cells. Cardiovasc. Res. (1992) 26:923–932.
  • FRANZINI-ARMSTRONG C, JORGENSEN AO: Structure and development of EC-coupling units in skeletal muscle. Ann. Rev Physiol (1994) 56:509–534.
  • ANDERSON K, MEISSNER G: T-tubule depolarization-induced SR Ca2+ release is controlled by dihydropyridine receptor- and Ca2±-dependent mechanisms in cell homogenates from rabbit skeletal muscle. J. Gen. Physiol (1995) 105:363–383.
  • KLEIN MG, CHENG H, SANTANA LF, JIANG YH et al.: Two mechanisms of quantized calcium release in skeletal muscle. Nature (1996) 379:455–458.
  • IKEMOTO T, IINO M, ENDO M: Enhancing effect of CaM on Ca2±-induced Ca2+ release in the sarcoplasmic reticulum of rabbit skeletal muscle fibres. I Physiol (1995) 487\(Pt3):573–582.
  • IKEMOTO T, TAKESHIMA H, IINO M, ENDO M: Effect of CaM on Ca2±-induced Ca2+ release of skeletal muscle from mutant mice expressing either ryanodine receptor Type 1 or Type 3. Pflugers Arch. (1998) 437(1):43–48.
  • BURATTI R, PRESTIPINO G, MENEGAZZI P, TREVES S, ZORZATO F: Calcium dependent activation of skeletal muscle Ca2+ release channel (ryanodine receptor) by CaM. Biochem. Biophys. Res. Commun. (1995) 213(3):1082–1090.
  • BALSHAW DM, XU L, YAMAGUCHI N, PASEK DA, MEISSNER G: CaM binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol. Chem. (2001) 276(23):20144–20153.
  • MEISSNER G, HENDERSON JS: Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg 2*, adenine nucleotide, and CaM. J. Biol. Chem. (1987) 262(7):3065–3073.
  • FRUEN BR, BARDY JM, BYREM TM et al.: Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am. Physiol (2000) 279:C724–C733.
  • RODNEY GG, MOORE CP, WILLIAMS BY, ZHANG JZ et al.: Calcium binding to CaM leads to an N-terminal shift in its binding site on the ryanodine receptor. Biol. Chem. (2001) 276(3):2069–2074.
  • HAMILTON SL, REID MB: RyR1 modulation by oxidation and CaM. Antioxid. Redox Signal (2000) 2(1):41–45.
  • SAMSO M, WAGENKNECHT T: ApoCaM and Ca2+-CaM bind to neighboring locations on the ryanodine receptor. J. Biol. Chem. (2002) 277(2):1349–1353.
  • YAMAGUCHI N, XIN C, MEISSNER G: Identification of ApoCaM and Ca2+-CaM regulatory domain in skeletal muscle Ca2+ release channel, ryanodine receptor. Biol. Chem. (2001) 276:22579–22585.
  • CARMODY M, MACKRILL JJ, SORRENTINO V, O'NEILL C: FKBP12 associates tightly with the skeletal muscle Type 1 ryanodine receptor, but not with other intracellular calcium release channels. FEBS Lett (2001) 505(1):97–102.
  • MACKRILL JJ, O'DRISCOLL S, LAI FA, MCCARTHY TV: Analysis of Type 1 ryanodine receptor-12 kDa FK506-binding protein interaction. Biochem. Biophys. Res. Commun. (2001) 285(1):52–57.
  • GABURJAKOVA M, GABURJAKOVA J, REIKEN S, HUANG F et al.: FKBP12 binding modulates ryanodine receptor channel gating. Biol. Chem. (2001) 276(20):16931–16935.
  • GUO W, CAMPBELL KP: Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. Biol. Chem. (1995) 270(16):9027–9030.
  • MURRAY BE, OHLENDIECK K: Complex formation between calsequestrin and the ryanodine receptor in fast- and slow-twitch rabbit skeletal muscle. FEBS Lett. (1998) 429(3):317–322.
  • CASWELL AH, BRANDT NR, BRUNSCH WIG JP, PURKERSON S: Localization and partial characterization of the oligomeric disulfide-linked molecular weight 95,000 protein (triadin) which binds the ryanodine and dihydropyridine receptors in skeletal muscle triadic vesicles. Biochem. (1991) 30(30):7507–7513.
  • OHKURA M, FURUKAWA K, FUJIMORI H, KURUMA A: Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin. Biochem. (1998) 37(37):12987–12993.
  • HIDALGO C, DONOSO P: Luminal calcium regulation of calcium release from sarcoplasmic reticulum. BioscL Rep. (1995) 15(5):387–397.
  • SITSAPESAN R, WILLIAMS AJ: Regulation of current flow through ryanodine receptors by luminal Ca2+. Mem& Biol. (1997) 159(3):179–185.
  • SZEGEDI C, SÁRKOZI S, HERZOG A, JONA I, VARSÁNYI M: Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem. .1 (1999) 337\(Pt 1):19–22.
  • MARKS AR: Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death. Mol Cell. Cardiol (2001) 33(4):615–624. N.FISHMAN GI: Association of sorcin with the cardiac ryanodine receptor. Biol. Chem. (1995) 270:26411–26418.
  • LOKUTA AJ, MEYERS MB, SANDER PR, FISHMAN GI, VALDIVIA H: Modulation of cardiac ryanodine receptors by sorcin. Biol Chem. (1997) 272:25333–25338.
  • YIN CC, LAI FA: Intrinsic lattice formation by the ryanodine receptor calcium-release channel. Nature Cell Biol. (2000) 2(9):669–671.
  • MARX SO, GABURJAKOVA J, GABURJAKOVA M, HENRIKSON C et al: Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res. (2001) 88:1151–1158.
  • WEN L, ZHANG L, LONGO LD: Cerebral artery KATP- and KCa-channel activity and contractility: changes with development. Am. Physiol Soc. Abst. (2000) 7:0341R.
  • CHU A, FILL M, STEFANI E, ENTMAN ML: Cytoplasmic Ca2+ does not inhibit the cardiac muscle sarcoplasmic reticulum ryanodine receptor Ca2+ channel, although Ca2±-induced Ca2+ inactivation of Ca2+ release is observed in native vesicles. Mem& Biol. (1993) 135:49–59.
  • LAVER DR, RODEN LD, AHERN GP, EAGER KR et al.: Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Mem& Biol. (1995) 147:7–22.
  • DU GG, MACLENNAN DH: Ca2+ inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca2+ release channels (ryanodine receptors). I Biol. Chem. (1999) 274:26120–26126.
  • LI P, CHEN SR: Molecular basis of Ca2+ activation of the mouse cardiac Ca2+ release channel (ryanodine receptor). J. Gen. Physiol (2001) 118(1):33–44.
  • MEISSNER G, DARLING E, EVELETH J: Kinetics of rapid Ca2+ release by sarcoplasmic reticulum: effects of Ca2+, Mg2+, and adenine nucleotides. Biochem. (1986) 25:236–244.
  • MOUTIN MJ, DUPONT Y: Rapid filtration studies of Ca2±-induced Ca2±release from skeletal sarcoplasmic reticulum. J. Biol. Chem. (1988) 263:4228–4235.
  • HIGASHIDA H, YOKOYAMA S, HASHII M, TAKETO M et al.: Muscarinic receptor-mediated dual regulation of ADP-ribosyl cyclase in NG108-15 neuronal cell membranes. " Biol. Chem. (1997) 272:31272–31277.
  • CANCELA JM: Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: the roles of NAADP, cADPR, and IP3. Ann. Rev. Physiol. (2001) 63:99–117.
  • BERRIDGE MJ: Cell Signaling: a tale of two messengers. Nature (1993) 365(6445):388–389.
  • GUSE AH: Cyclic ADP-ribose. J. Mol Med. (2000) 78(1):26–35
  • LI PL, TANG WX, VALDIVIA HH, ZOU AP, CAMPBELL WB: cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am. J. Physiol Heart Circ. Physiol (2001) 280(1):H208–H215.
  • RUSINKO N, LEE HC: Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NM/ into a cyclic metabolite with intracellular Ca2±-mobilizing activity Biol. Chem. (1989) 264:11725–11731.
  • ZIEGLER M: New functions of a long-known molecule: emerging roles of NAD in cellular signaling. Ear: Biochem. (2000) 267:1550–1564.
  • LEE HC: Physiological functions of cyclic ADP-ribose and NADPH as calcium messengers. Ann. Rev Pharmacol Toxicol (2001) 41:317–345.
  • LEE HC, GRAEFF RM, WALSETH TF: ADP-ribosyl cyclase and CD38. Multi-functional enzymes in Ca2+ signaling. Adv. Exp. Med. Biol. (1997) 419:411–419.
  • GRAEFF RM, FRANCO L, DE FLORA, LEE HC: Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. Biol Chem. (1998) 273:118–125.
  • ZHANG FJ, GU QM, JING PC, SIH CJ: Enzymatic cyclization of nicotinamide adenine dinuleotide phosphate (NADP). Bioorg. Med. Chem. Lett. (1995) 5:2267–2272.
  • CHINI EN, DOUSA TP: Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca2+ -releasing agonist, in rat tissues. Biochem. Biophys. Res. Commun. (1995) 209:167–174.
  • VU CQ, LU PJ, CHEN CS, JACOBSON MK: 2-Phospho-cyclic ADP-ribose, a calcium-mobilizing agent derived from NADP. Bid Chem. (1996) 271:4747–4754.
  • LAHOURATATE P, GUIBERT J, FAIVRE JF: cADP-ribose releases Ca2+ from cardiac sarcoplasmic reticulum independently of ryanodine receptor. Am. J. Physiol (1997) 273(3 Pt 2):H1082–H1089.
  • COPELLO JA, QI Y, JEYAKUMAR LH, OGUNBUNMI E, FLEISCHER S: Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Calcium (2001) 30(4):269–284.
  • LEE HC, AARHUS R: A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem. (1995) 270:2152–2157.
  • CLAPPER DL, WALSETH TF, DARGIE PJ, LEE HC: Pyridine nucleotide metabolites stimulate calcium release from sea urchin microsomes desensitized to inositol trisphosphate. J. Biol. Chem. (1987) 262:9561–9568.
  • AARHUS R, DICKEY DM, GRAEFF RM, GEE KR et al.: Activation and inactivation of Ca2+ release by NADP*. Biol. Chem. (1996) 271:8513–8516.
  • CHINI EN, LIANG M, DOUSA TP: Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotidephosphate-induced Ca2+ release systems. Biochem. J. (1998) 335:499–504.
  • HOWARD M, GRIMALDI JC, BAZAN JF, LUND FE et al: Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science (1993) 262:1056–1059.
  • SANTELLA L, KYOZUKA K, GENAZZANI AA, DE RISO L, CARAFOLI E: Nicotinic acid adenine dinucleotide phosphate-induced Ca2±release. Interactions among distinct Ca2+ mobilizing mechanisms in starfish oocytes." Biol. Chem. (2000) 275:8301–8306.
  • NAVAZIO L, BE WELL MA, SIDDIQUA A, DICKINSON GD et al: Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc. Natl. Acad. ScL USA (2000) 97(15):8693–8698.
  • GENAZZANI AA, GALIONE AA: Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends. Pharmacol ScL (9997) 18(4):108–110.
  • LEE HC, AARHUS R: Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose.' Cell Sti. (2000) 113:4413–4420.
  • GENAZZANI AA, EMPSON RM, GALIONE A: Unique inactivation properties of NAADP-sensitive Ca2+ release. J.Biol. Chem. (1996) 271:11599–11602.
  • GENAZZANI AA, GALIONE A: Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem. J. (1996) 315:721–725.
  • CHURCHILL GC, OKADA Y, THOMAS JM, GENAZZANI AA et al.: NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell (2002) 111(5)703–708.
  • CHURCHILL GC, GALIONE A: NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3 - and cADPR-sensitive Ca2+ stores. EMBO (2001) 20:2666–2671.
  • HIGASHIDA H, YOKOYAMA S, HOSHI N, HASHII M et al.: Signal transduction from bradykinin, angiotensin, adrenergic and muscarinic receptors to effector enzymes, including ADP-ribosyl cyclase. Biol. Chem. (2001) 382(1):23–30.
  • SITSAPESAN R, MCGARRY SJ, WILLIAMS AJ: Cyclic ADP-ribose competes with ATP for the adenine nucleotide binding site on the cardiac ryanodine receptor Ca2+-release channel. Circ Res. (1994) 75:596–600.
  • MORII H, TONOMURA Y: The gating behavior of a channel for Ca2+ -induced Ca2+ release in fragmented sarcoplasmic reticulum. Biochem. (1983) 93:1271–1285.
  • MEISSNER G: Adenine nucleotide stimulation of Ca2+ -induced Ca2+ release in sarcoplasmic reticulum. J. Biol. Chem. (1984) 259:2365–2374.
  • MEISSNER G, HENDERSON JS: Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg 2*, adenine nucleotide, and CaM. J. Biol. Chem. (1987) 262:3065–3073.
  • CHAN WM, WELCH W, SITSAPESAN R: Structural factors that determine the ability of adenosine and related compounds to activate the cardiac ryanodine receptor. Br. J. Pharinacol (2000) 130(7):1618–1626.
  • OTSU K, WILLARD HF, KHANNA VK, ZORZATO F et al.: Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum.j Biol. Chem. (1990) 265(23):13472–13483.
  • JONA I, SZEGEDI C, SARKOZI S et al.: Altered inhibition of the rat skeletal ryanodine receptor/calcium release channel by magnesium in the presence of ATP Pflugers Arch.IV. Eur. I Physiol (2001) 441(6):729–738.
  • SUKO J, MAURER-FOGY I, PLANK B et al.: Phosphorylation of serine 2843 in ryanodine receptor-calcium release channel of skeletal muscle by cAMP-, cGMP- and CaM-dependent protein kinase. Biochim. Biophys. Acta (1993) 1175:193–206.
  • WITCHER DR, STRIFLER BA, JONES LR: Cardiac-specific phosphorylation site for multifunctional Ca2+ /CaM-dependent protein kinase is conserved in the brain ryanodine receptor. Biol. Chem. (1992) 267(7):4963–4967.
  • HERRMANN-FRANK A, VARSANYI M: Enhancement of Ca2±release channel activity by phosphorylation of the skeletal muscle ryanodine receptor. FEBS Lett. (1993) 332:237–242.
  • GECHTMAN Z, ORR I, SHOSHAN-BARMATZ V: Involvement of protein phosphorylation in activation of Ca2+ efflux from sarcoplasmic reticulum. Biochem. (1991) 276:97–102.
  • WANG J, BEST PM: Inactivation of the sarcoplasmic reticulum channel by protein kinase. Nature (1992) 359:739–741.
  • WU Y, COLBRAN RJ, ANDERSON ME: CaM kinase is a molecular switch for cardiac excitation-contraction coupling. Proc. Natl Acad. Sd. USA (2001) 98(5):2877–2881.
  • MARX SO, REIKEN S, HISAMATSU Y et al.: PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell (2000) 101(4):365–376.
  • ANTOS CL, FREY N, MARX SO, REIKEN S et al: Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. (2001) 89(11):997–1004.
  • COLPO P, NORI A, SACCHETTO R, DAMIANI E, MARGRETH A: Phosphorylation of the triadin cytoplasmic domain by CaM protein kinase in rabbit fast-twitch muscle sarcoplasmic reticulum. MM. Biochem. (2001) 223(1-2):139–145.
  • MARKS AR, REIKEN S, MARX SO: Progression of heart failure: is protein kinase a hyperphosphorylation of the ryanodine receptor a contributing factor? Circulation (2002) 105(3):272–275.
  • EL-HAYEK R, VALDIVIA C, VALDIVIA HH, HOGAN K, CORONADO R: Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by palmitoyl carnitine. Biophys. J. (1993) 65:779–789.
  • DUMONTEIL E, BARRE H. MEISSNER G: Effects of palmitoyl carnitine and related metabolites on the avian Ca2+-ATPase and Ca2+ release channel. Physiol (1994) 479:29–39.
  • FULCERI R, NORI A, GAMBERUCCI A, VOLPE P et al.: Fatty acyl-CoA esters induce calcium release from terminal cisternae of skeletal muscle. Cell Cakiurn (1994) 15:109–116.
  • CHEAH AM: Effect of long chain unsaturated fatty acids on the calcium transport of sarcoplasmic reticulum. Biochim. Biophys. Acta (1981) 648:113–119.
  • MESSINEO FC, RATHIERM, FAVREAU C, WATRAS J, TAKENAKA H: Mechanisms of fatty acid effects on sarcoplasmic reticulum: the effects of palmitic and oleic acids on sarcoplasmic reticulum function: a model for fatty acid membrane interactions. J. Biol. Chem. (1984) 259:1336–1343.
  • CARDOSO CM, DE MEIS L: Modulation by fatty acids of Ca2+ fluxes in sarcoplasmic-reticulum vesicles. Biochem. (1993) 296:49–52.
  • DETTBARN CA, PALADE P: Arachidonic acid-induced Ca2+ release from isolated sarcoplasmic reticulum. Biochem. Pharmacol (1993) 45:1301–1309.
  • UEHARA A, YASUKOCHI M IMANAGA I: Modulation of ryanodine binding to the cardiac Ca2+ release channel by arachidonic acid. J. Mol Cell Cardiol (1996) 28:43–51.
  • SABBADINI RA, BETTOR, TERESI A, FACHECHI-CASSANO G, SALVIATI G: The effects of sphingosine on sarcoplasmic reticulum membrane calcium release. 1 Biol. Chem. (1992) 267:15475–15484.
  • MCDONOUGH PM, YASUI K, BETTO R, SALVIATI G et al.: Control of cardiac Ca2+ levels: inhibitory actions of sphingosine on Ca2+ transients and L-type Ca2+ channel conductance. Circ. Res. (1994) 75:981–989.
  • DETTBARN CA, BETTO R, SALVIATI G, SABBADINI RA, PALADE P: Involvement of ryanodine receptors in sphingosylphosphoryl choline-induced calcium release from brain microsomes. Brain Res. (1995) 669:79–85.
  • STRIGGOW F, EHRLICH BE: Regulation of intracellular calcium release channel function by arachidonic acid and leukotriene B4. Biochem. Biophys. Res .Commun. (1997) 237(2):413–418.
  • PALADE P: Drug-induced Ca2+ release from isolated sarcoplasmic reticulum: III block of Ca2±-induced Ca2+ release by organic polyamines. J. Biol. Chem. (1987) 262:6149–6154.
  • UEHARA A, FILL M, VELEZP, YASUKOCHI M, IMANAGA I: Rectification of rabbit cardiac ryanodine receptor current by endogenous polyamines. Biophys. .1 (1996) 71:769-777.
  • MUSA H, VEENSTRA D: Voltage-dependent blockade of connexin 40 gap junctions by spermine. Biophys. J(2003) 84(1):205–219.
  • EU JP, SUN J, XU L, STAMLERJS, MEISSNER G: The skeletal muscle calcium release channel: coupled 02 sensor and NO signaling functions. Cell (2000) 102(4):499–509.
  • SUN J, XU L, EU JP, STAMLE JS, MEISSNER G: Classes of thiols that influence the activity of the skeletal muscle calcium release channel. Biol. Chem. (2001) 276(19):15625–15630.
  • PESSAH IN, FENG W: Functional role of hyperreactive sulfhydryl moieties within the ryanodine receptor complex. Antioxid. Redox Signal (2000) 2(1):17–25.
  • EU JP, XU L, STAMLERJS, MEISSNER G: Regulation of ryanodine receptors by reactive nitrogen species. Biochem. Pharmacol (1999) 57(10):1079–1084.
  • EAGER KR, DULHUNTY AF: Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg 2* and ATP. J. Mem& Biol. (1998) 163(1):9–18.
  • HART JD, DULHUNTY AF: Nitric oxide activates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding. .1 Membr. Biol. (2000) 173:227–236.
  • STOYANOVSKY D, MURPHY T, ANNO PR, KIM YM, SALAMA G: Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium (1997) 21:19–29.
  • ZAHRADNIKOVA A, MINAROVIC I, VENEMA RC, MESZAROS LG: Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Cakium (1997) 22:447–453.
  • MESZAROS LG, MINAROVIC I, ZAHRADNIKOVA A: Inhibition of the skeletal muscle ryanodine receptor calcium release channel by nitric oxide. FEBS Lett. (1996) 380:49–52.
  • AGHDASI B, ZHANG JZ, WU Y, REID MB, HAMILTON SL: Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel."Biol Chem. (1997) 272:3739–3749.
  • XU L, EU JP, MEISSNER G, STAMLERJS: Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science (1998) 279:234–237.
  • SUN J, XIN C EU JP, STAMLER JS, MEISSNER G: Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc. Natl. Acad. Sci. USA (2001) 98(20):11158–11162.
  • ROGERS EF et al: Plant Insecticides. I. Ryanodine, a new alkaloid from Ryania speciosa Vahl../. Am. Chem. Soc. (1948) 70:3086.
  • JENDEN DJ, FAIRHURST AS: The pharmacology of ryanodine. Pharmacol Rev. (1969) 21:1–25.
  • FLEISCHER S, OGUNBUNMI EM, DIXON MC, FLEER EAM: Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc. Natl. Acad. ScL USA (1985) 82(21):7256–7259.
  • MEISSNER G: Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. Biol. Chem. (1986) 261:6300–6306.
  • BULL R, MARENGO J, SUAREZ-ISLA B et al.: Activation of calcium channels in sarcoplasmic reticulum from frog muscle by nanomolar concentrations of ryanodine. Biophys. (1989) 56:749–756.
  • CALLAWAY C, SERYSHEV A, WANG JP, SLAVIK KJ et al.: Localization of the high and low affinity [31-] -ryanodine binding sites on the skeletal muscle Ca2+ release channel. Biol Chem. (1994) 269:15876–15884.
  • BUCK E, ZIMANYI I, ABRAMSON JJ, PESSAH IN: Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. Biol. Chem. (1992) 267:23560–23567.
  • PROCITA L: The action of ryanodine on mammalian skeletal muscle in situ. Pharmacol Exp. The]: (1956) 117:363–373.
  • MEISSNER G, EL-HASHEM A: Ryanodine as functional probe of the skeletal muscle sarcoplasmic reticulum Ca2+ release channel. Mol Cell. Biochem. (1992) 114:119–123.
  • SUTKO JL, AIREY JA, WELCH W, RUEST L: The pharmacology of ryanodine and related compounds. Pharmacol Rev(1997) 49:53–98.
  • •The most comprehensive review on the pharmacology of ryanodine.
  • BIDASEE KR, BESCH HR: Structure-function relationships among ryanodine derivatives. Pyridyl ryanodine definitively separates activation potency from high affinity. Biol. Chem. (1998) 273(20):12176–12186.
  • JEFFERIES PR, BLUMENKOPF TA, GENGO PJ et al.: Ryanodine action at calcium release channels: importance of hydroxyl substituents. Med. Chem. (1996) 39:2331–2338.
  • USHERWOOD PN, VAIS H: Towards the development of ryanoid insecticides with low mammalian toxicity. Toxicol Lett. (1995) 82–83:247–254.
  • HUMERICKHOUSE RA, BESCH HR, GERZONK, RUEST L: Differential activating and deactivating effects of natural ryanodine congeners on the calcium release channel of sarcoplasmic reticulum: evidence for separation of effects at functionally distinct sites. Mol Pharmacol (1993) 44(2):412–421.
  • FEINSTEIN MB: Inhibition of contraction and calcium exchange-ability in rat uterus by local anesthetics. Pharmacol Exp. The]: (1966) 152(3):516–524.
  • CHAMBERLAIN BK, VOLPE P, FLEISCHER S: Inhibition of calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. Biol. Chem. (1984) 259:7547–7553.
  • XU L, JONES RV, MEISSNER G: Effects of local anesthetics on single channel behavior of skeletal muscle calcium release channel. Gen. Physic' (1993) 101:207–233.
  • ANTONIU B, KIM DH, MORII M, IKEMOTO N: Inhibitors of Ca2+ release from the isolated sarcoplasmic reticulum: Ica channel blockers. Biochim. Biophys. Acta (1985) 816:9–17.
  • VOLPE P, PALADE P, COSTELLO B, MITCHELL RD, FLEISCHER S: Spontaneous calcium release from sarcoplasmic reticulum: effect of local anesthetics. I. Biol. Chem. (1983) 258:12434–12442.
  • HERBETTE L, MESSINEO FC, KATZ AM: The interaction of drugs with the sarcoplasmic reticulum. Ann. Rev. Pharmacol Toxicol (1982) 22:413–434.
  • XU L, JONES RV, MEISSNER G: Effects of local anesthetics on single channel behavior of skeletal muscle calcium release channel. Gen. Physic] (1993) 101:207–233.
  • ZAHRADNIKOVA A, PALADE P: Procaine effects on single sarcoplasmic reticulum Ca2+ release channels. Biophys. (1993) 64:991–1003.
  • PALADE P: Drug-induced Ca2+release from isolated sarcoplasmic reticulum: II releases involving a Ca2+ -induced Ca2+ release channel. " Biol. Chem. (1987) 262:6142–6148.
  • BELTRAN M, BULL R, DONOSO P, HIDALGO C: Ca2+- and pH-dependent halothane stimulation of Ca2+ release in sarcoplasmic reticulum from frog muscle. Am. Physic] (1996) 271:C540–0546.
  • BEELER TJ, GABLE K: Effect of halothane on Ca2+-induced Ca2+ release from sarcoplasmic reticulum vesicles isolated from rat skeletal muscle. Biochim. Biophys. Acta (1985) 821:142–152.
  • OHNISHI ST: Effects of halothane, caffeine, dantrolene and tetracaine on the calcium permeability of skeletal muscle sarcoplasmic reticulum of malignant hyperthermic pigs. Biochim. Biophys. Acta (1987) 897:261–268.
  • NELSON TE, SWEO T: Ca2+ uptake and Ca2+release by skeletal muscle sarcoplasmic reticulum: different sensitivity to inhalational anesthetics. Anesthesiology (1988) 69:571–577.
  • HERLAND JS, JULIAN FJ, STEPHENSON DG: Halothane increases Ca2+ efflux via Ca2+ channels of sarcoplasmic reticulum in chemically skinned rat myocardium. Physiol (1990) 426:1–18.
  • FRAZER MJ, LYNCH C: Halothane and isoflurane effects on Ca2+ fluxes of isolated myocardial sarcoplasmic reticulum. Anesthesiology (1992) 77:316–323.
  • KOMAI H, RUSY BF: Effect of thiopental on Ca2+ release from sarcoplasmic reticulum in intact myocardium. Anesthesiology (1994) 81:946–952.
  • WHEELER DM, KATZ A, RICE RT, HANSFORD RG: Volatile anesthetics effects on sarcoplasmic reticulum Ca content and sarcolemmal Ca flux in isolated rat cardiac cell suspensions. Anesthesiology (1994) 80:372–382.
  • HOFFMANN p, HEINROTH K, RICHARDS D, PLEWS p, TORAASON M: Depression of calcium dynamics in cardiac myocytes: a common mechanism of halogenated hydrocarbon anesthetics and solvents.' Mel Cell. Cardiol (1994) 26:579-589. 845 Expert Op/n. Ther. Patents (2003)13(6)
  • ZORZATO F, SCUTARI E, TEGAZZIN V, CLEMENTI E, TREVES S.: Chlonieresol: an activator of ryanodine receptor-mediated Ca2+ release. Ma Pharmacol (1993) 44:1192–1201.
  • HERRMANN-FRANK A, RICHTER M, SARKOZI S, MOHR U, LEHMANN-HORN F: 4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor. Biochim. Biophys. Acta (1996) 1289(1):31–40.
  • BEELER TJ, GABLE K: Activation of Ca2+ release from sarcoplasmic reticulum vesicles by 4-alkylphenols. Arch. Biochem. Biophys. (1993) 301:216–220.
  • PESSAH IN, MOHR FC, SCHIEDT M, JOY RIVI: Stereoselective modulation of ryanodine-sensitive calcium channels by the isomer of hexachlorocyclohexane (-HCH). I Pharmacol Exp. Ther. (1992) 262:661–669.
  • ROSA R, SANFELIU C, RODRIGUEZ-FARRE E, FRANDSEN A, SCHOUSBOE A, SUNOL C: Properties of ryanodine receptors in cultured cerebellar granule neurons: effects of hexachlorocyclohexane isomers and calcium. Neurosci. Res. (1997) 47(1):27–33.
  • MCCARTHY TV, HEALY JMS, LEHANE M et al.: Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q11.2-13.2. Nature (1990) 343:562–563.
  • GILLARD EF, OTSU K, FUJII J et al.: Polymorhisms and deduced amino acid substitutions in the coding sequence of the ryanodine receptor (RYR1) gene and individuals with malignant hyperthermia. Genomics (1992) 13:1247–1254.
  • QUANE KA, KEATING KE, HEALY JMS et al.: Mutation screening of the RYR1 gene in malignant hyperthermia: detection of a novel Tyr to Ser mutation in a pedigree with associated central cores. Genomics (1994) 23:236–239.
  • MONNIER N, PROCACCIO V, STIEGLITZ P, LUNARDI J: Malignant-hyperthermia susceptibility is associated with a mutation of the 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am. Hum. Genet. (1997) 60:1316–1325.
  • JURKAT-ROTT K, McCARTHY T, LEHMAN-HORN F: Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve (2000) 23(1):4–17
  • HERBETTE L, MESSINEO FC, KATZ AM.: The interaction of drugs with the sarcoplasmic reticulum. Ann. Rev Pharmacol Toxicol (1982) 22:413–434.
  • PAUL-PLETZER K, YAMAMOTO T, BHAT MB et al.: Identification of the dantrolene binding sequence on the skeletal muscle ryanodine receptor. Biol. Chem. (2002) 277(38):34918–34923.
  • ZHAO F, LIP, CHEN SR, LOUIS CE FRUEN BR: Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. Biol. Chem. (2001) 276(17):13810–13816.
  • SHUAIB A, PAASUKE RT, BROWNELL KW: Central core disease. Clinical features in 13 patients. Medicine (1987) 66:389–396.
  • LYNCH PJ, TONG J, LEHANE M et al: A mutation in the transmembrane/lumenal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc. Natl. Acad. ScL USA (1999) 277(38):34918–34923.
  • QUANE KA, HEALY JMS, KEATING KE et al: Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat. Genet. (1993) 5:51–55.
  • GUTMANN E, SANDOW A: Caffeine-induced contracture and potentiation of contraction in normal and denervated rat muscle. Life Sci. (1965) 4(11):1149–1156.
  • ZETT L, KUCHLER G: Investigations on240.the action mechanism of caffeine-, KC1- and acid-induced contractions. Acta. Biol. Med. Ger. (1965) 14(6):687–699.
  • CARAFOLI E, PATRIARCA P, ROSSI CS:241.A comparative study of the role of mitochondria and the sarcoplasmic reticulum in the uptake and release of Ca2+ by the rat diaphragm. j Cell. Physiol (1969) 74(1):17–30.
  • HERNANDEZ-CRUZ A,242.DIAZ-MUNOZ M, GOMEZ- CHAVARIN M et al.: Properties of the ryanodine-sensitive release channel that underlie caffeine-induced Ca2+ mobilization from intracellular stores in mammalian sympathetic neurons. Eur. Neurosci. (1995) 7:1684–1699.
  • ROUSSEAU E, LADINE J, LIU QY, MEISSNER G: Activation of the Ca2±release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch. Biochem. Biophys. (1988) 267:75–86.
  • ROUSSEAU E, MEISSNER G: Single cardiac sarcoplasmic reticulum Ca2+ release channel: activation by caffeine. Am. Physiol (1989) 256:H328–H333.
  • MCGARRY SJ, WILLIAMS AJ: Adenosine discriminates between the caffeine and adenine nucleotide sites on the sheep cardiac sarcoplasmic reticulum calcium-release channel. Membr. Biol. (1994) 137:169–177.
  • SEIFERT J, CASIDA JE: Ca2+-dependent ryanodine binding site: soluble preparation from rabbit cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta (1986) 861:399–405.
  • WOHLFARTH-BOTTERMANN KE: Oscillatory contraction activity in Physarum. Exp. Biol. (1979) 81:15–32.
  • MATTHEWS LM Jr: Ca2+ regulation in caffeine-derived microplasmodia of Physarum polycephalum. .1. Cell Biol. (1977) 72(2):502–505.
  • TAKAHASHI Y, FURUKAWA K, ISHIBASHI M et al.: Structure-activity relationship of bromoeudistomin D, a powerful Ca2+ releaser in skeletal muscle sarcoplasmic reticulum. Eur. .1 Pharmacol (1995) 288(3):285–293.
  • OHIZUMI Y, MATSUNAGA K, NAKATANI K, KOBAYASHI J'I: Potent stimulation of myofilament force and ATPase activity of skeletal muscle by eudistomin M, a novel Ca2±-sensitizing agent from a Caribbean tunicate. Pharmacol Exp. TheL (1998) 285:695–699.
  • OHIZUMI Y: Application of physiologically active substances isolated from natural resources to pharmacological studies. fpn. Pharmacol (1997) 73(4):263–289.
  • SEINO A, KOBAYASHI M, KOBAYASHI J et al: 9-Methyl-7-bromoeudistomin D, a powerful radio-labelable Ca2+ releaser having caffeine-like properties, acts on Ca2+-induced Ca2±release channels of sarcoplasmic reticulum. Pharmacol Exp. The,: (1991) 256:861–867.
  • YOSHIKAWA K, FURUKAWA KI, YAMAMOTO M, MOMOSE K, OHIZUMI Y: [3H]-9-Methyl-7-bromoeudistomin D, a caffeine-like powerful releaser, binds to caffeine-binding sites distinct from the ryanodine receptors in brain microsomes. FEBS Lett. (1995) 373:250–254.
  • THOMAS JM, CHURCHILL GC, PATEL S, GALIONE A. Distinct pharmacology of 2-hydroxycarbazole-induced Ca2+ release in the sea urchin egg.' Pharmacol Exp. Ther. (2001) 298(2):644–650.
  • TOVEY SC, LONGLAND CL, MEZNA M, MICHELANGELI F: 2-Hydroxycarbazole induces Ca2+ release from sarcoplasmic reticulum by activating the ryanodine receptor. Eui: Pharmacol (1998) 354(2-3):245–251.
  • TAKAHASHI Y, FURUKAWA KI, KOZUTSUMI D, ISHIBASHI M, KOBAYASHI J, OHIZUMI Y: 4,6-Dibromo- 3-hydroxycarbazole (an analogue of caffeine-like Ca2+ releaser), a novel type of inhibitor of Ca2+ -induced Ca2+ release in skeletal muscle sarcoplasmic reticulum. Br. Pharinacol (1995) 114:941–948.
  • SHTIFMAN A, WARD CW, WANG J, VALDIVIA HH, SCHNEIDER MF: Effects of imperatoxin A on local sarcoplasmic reticulum Ca(2+) release in frog skeletal muscle. Biophys. J. (2000) 79(2):814–827.
  • SAMSO M, TRUJILLO R, GURROLA GB, VALDIVIA HH, WAGENKNECHT T: Three-dimensional location of the imperatoxin A binding site on the ryanodine receptor. J. Cell Biol. (1999) 146(2):493–499.
  • EL-HAYEK R, LOKUTA AJ, AREVALO C, VALDIVIA HH: Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. Biol. Chem. (1995) 270(48):28696–286704.
  • RIPATHY A, RESCH W, XU L, VALDIVIA HH, MEISSNER G: Imperatoxin A induces subconductance states in Ca2+ release channels (ryanodine receptors) of cardiac and skeletal muscle. Gen. Physiol (1998) 111(5):679–690.
  • GURROLA GB, AREVALO C, SREEKUMAR R, LOKUTA AJ, WALKER JVV, VALDIVIA HH: Activation of ryanodine receptors by imperatoxin A and a peptide segment of the II - III loop of the dihydropyridine receptor. I Biol. Chem. (1999) 274(12):7879–7886.
  • FAJLOUN Z, KHARRAT R, CHEN L et al.: Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca2+ release channel/ ryanodine receptors. FEBS Lett. (2000) 469(2-3):179–185.
  • MORRISSETTE J, BEURG M, SUKHAREVA M, CORONADO R: Purification and characterization of ryanotoxin, a peptide with actions similar to those of ryanodine. Biophys. J. (1996) 71(2):707–721.
  • OHKURA M, FURUKAWA K, OIKAWA K, OHIZUMI Y: The properties of specific binding site of 125 I-radioiodinated myotwdn a, a novel Ca2+ releasing agent, in skeletal muscle sarcoplasmic reticulum. I Pharmacol Exp. The]: (1995) 273(2):934–939.
  • YUDKOWSKY ML, BEECH J, FLETCHER JE: Myotoxin a reduces the threshold for calcium-induced calcium release in skeletal muscle. Toxicon (1994) 32(3):273–278.
  • MORRISSETTE J, KRATZSCHMAR J, HAENDLER B et al.: Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors. Toxicon. (1990) 28(3):299–309.
  • MOCHCA-MORALES J, MARTIN BM, POSSANI LD: Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom. Toxicon. (1990) 28(3):299–309.
  • NOBILE M, NOCETI F, PRESTIPINO G, POSSANI LD: Helothermine, a lizard venom toxin, inhibits calcium current in cerebellar granules. Exp. Brain Res. (1996) 110(1):15–20.
  • MASUOKA H, ITO M, NAKANO T, NAKA M, TANAKA T: effects of ruthenium red on activation of Ca2±-dependent cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Comm. (1990) 169(1):315–322.
  • LUTHRA R, OLSON MS: The inhibition of calcium uptake and release by rat liver mitochondria by ruthenium red. FEBS Lett. (1977) 81(1):142–146.
  • CORBALAN-GARCIA S, TERUEL JA, GOMEZ-FERNANDEZ JC: Characterization of ruthenium red-binding sites of the Ca2+-ATPase from sarcoplasmic reticulum and their interaction with Ca2±-binding sites. Biochem. (1992) 287:767–774.
  • AMANN R, DONNERER J, LEMBECK F: Capsaicin-induced stimulation of polymodal nociceptors is antagonised by ruthenium red independently of extracellular calcium. Neuroscience (1989) 32(1):255–259.
  • BIND OLI A, AND FLEISCHER S: Induced Ca2+ release in skeletal muscle sarcoplasmic reticulum by sulfhydryl reagents and chlorpromazine. Arch. Biochem. Biophys. (1983) 221:458–466.
  • SMITH JS, ROUSSEAU E, MEISSNER G: CaM modulation of single sarcoplasmic reticulum Ca2±-release channels from cardiac and skeletal muscle. Circ. Res. (1989) 64:352–359.
  • PLOSKER GL, FOSTER RH: Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs (2000) 59(2):323–389.
  • SU Z, SUGISHITA K, LI F, RITTER M, BARRY WH: Effects of FK506 on [Ca2+II differ in mouse and rabbit ventricular myocytes. Pharmacol Exp. Ther. (2003) 304(1):334–341.
  • YANO M, ONO K, OHKUSA T et al.: Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation (2000) 102(17):2131–2136.
  • DOI M, YANO M, KOBAYASHI S et al: Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation (2002) 105(11):1374–1379.
  • SHOSHAN-BARIVIATZ V: ATP-dependent interaction of propranolol and local anesthetic with sarcoplasmic reticulum: stimulation of Ca2+ efflux. Biochem. J. (1988) 256:733–739.
  • ZCHUT S, FENG W, SHOSHAN-BARMATZ V: Ryanodine receptor/calcium release channel conformations as reflected in the different effects of propranolol on its ryanodine binding and channel activity. Biochem. J. (1996) 315:377–383.
  • KANG JJ, CHEN IL, CHENG YW: Induction of calcium release from isolated sarcoplasmic reticulum by triphenyltin. I Biochem. (1997) 122(1):173–177.
  • SAEKI K, OBI I, OGIKU N, SHI GEKAWA M, I MAGAWA T, MATSUMOTO T: Doxorubicin directly binds to the cardiac-type ryanodine receptor. Life Sci. (2002) 70(20):2377–2389.
  • ABRAMSON JJ, BUCK E, SALAMA G, CASIDA JE, PESSAH IN: Mechanism of anthraquinone-induced calcium release from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. (1988) 263(35):18750–18758.
  • CHENG YW, KANG JJ: Emodin-induced muscle contraction of mouse diaphragm and the involvement of Ca2+ influx and Ca2+ release from sarcoplasmic reticulum. Br. .1. Pharmacol (1998) 123(5):815–820.
  • LEE EH, MEISSNER G, KIM DO H: Effects of quercetin on single Ca2+ release channel behavior of skeletal muscle. Biophys. 1 (2002) 82(3):1266–1277.
  • SUZUKI A, MATSUNAGA K, SHIN H et al.: A novel Ca2+ releaser with caffeine-like properties from a marine sponge, Dysidea spp., acts on Ca2+induced Ca2+ release channels of skeletal muscle sarcoplasmic reticulum. Pharmacol Exp. The]: (2000) 292(2):725–730.
  • LOSAVIO AS, KOTSIAS BA: The effect of aminophylline on the contraction threshold of rat diaphragm fibers and its modification by 9-aminoacridine. Life Sci. (1996) 58(13):1031–1037.
  • KONDOH Y, MIZUSAWA S, MURAKAMI M, NAKAMICHI H, NAGATA K: Fasudil (HA1077), an intracellular calcium antagonist, improves neurological deficits and tissue potassium loss in focal cerebral ischemia in gerbils. Nemo]. Res. (1997) 19(2):211–215.
  • SAGAWA T, NISHIO M, SAGAWA K et al: Activation of purified cardiac ryanodine receptors by dihydropyridine agonists. Am. J. Physic]. Heart ChM Physic]. (2001) 280(3):H1201–H1207.
  • HADAD N, FENG W, SHOSHAN-BARMATZ V: Modification of ryanodine receptor/Ca2+ release channel with dinitrofluorobenzene. Biochem. J. (1999) 342\(Pt 1):239–248. no. MCGARRY SJ, WILLIAMS AJ: Activation of the sheep cardiac sarcoplasmic reticulum Ca2±-release channel by analogues of sulmazole. Br. J. Pharmacol (1994) 111(4):1212–1220.
  • KANG JJ, CHENG YW, KO FN, KUO ML, LIN CN, TENG CM: Induction of calcium release from sarcoplasmic reticulum of skeletal muscle by xanthone and norathyriol. Br. Pharmacol (1996) 118(7):1736–1742.
  • SAGAWA T, SAGAWA K, KELLY JE, TSUSHIMA RG, WASSERSTROM JA: Activation of cardiac ryanodine receptors by cardiac glycosides. Am. Physic]. Heart Circ. Physic]. (2002) 282(3):H1118–H1126.
  • MCGARRY SJ, SCHEUFLER E, WILLIAMS AJ: Effect of R56865 on cardiac sarcoplasmic reticulum function and its role as an antagonist of digoxin at the sarcoplasmic reticulum calcium release channel. Br: J. Pharmacol (1995) 114(1):231–237.
  • SARKOZI S, SZENTESI P, JONA I, CSERNOCH L: Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres. Physic]. (1996) 495(Pt 3):611–626.
  • KANG JJ, HSU KS, LIN-SHIAU SY: Effects of bipyridylium compounds on calcium release from triadic vesicles isolated from rabbit skeletal muscle. Br. J. Pharmacol (1994) 112(4):1216–1222.
  • HOLMBERG SR, WILLIAMS AJ: Phosphodiesterase inhibitors and the cardiac sarcoplasmic reticulum calcium release channel: differential effects of milrinone and enwdmone. Cardiovasc. Res. (1991) 25(7):537–545.
  • KANG JJ, CHENG YW: Effects of boldine on mouse diaphragm and sarcoplasmic reticulum vesicles isolated from skeletal muscle. Planta Med. (1998) 64(1):18–21.
  • HU CM, CHENG HW, CHENG YW, KANG JJ: Induction of skeletal muscle contracture and calcium release from isolated sarcoplasmic reticulum vesicles by sanguinarine. Br. Pharmacol (2000) 130:299–306.
  • FADDEEVA MD, BELIAEVA TN: Inhibition of the activity of membrane-bound Ca2+-ATPase in the sarcoplasmic reticulum fragments of rabbit skeletal muscles by the alkaloid sanguinarine. Trito/ogiia (1988) 30(6):685–690.
  • AGHDASI B, REID MB, HAMILTON SL: Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation. J. Biol. Chem. (1997) 272:25462–25467.
  • MENSHIKOVA EV, CHEONGE, SALAMA G: Low N-ethylmaleimide concentrations activate ryanodine receptors by a reversible interaction, not an alkylation of critical thiols. Biol. Chem. (2000) 275:36775–36780.
  • ABRAMSON JJ, CRONIN JR, SALAMA G: Oxidation induced by phthalocyanine dyes causes rapid calcium release from sarcoplasmic reticulum vesicles. Arch. Biochem. Biophys. (1988) 263(2):245–255.
  • ABRAMSON JJ, BUCK E, SALAMA G, CASIDA JE, PESSAH IN: Mechanism of anthraquinone-induced calcium release from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. (1988) 263(35):18750–18758.
  • POSTERINO GS, LAMB GD: Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad. J. Physic]. (1996) 496(Pt 3):809–825.
  • BRUNDER DG, DETTBARN C, PALADE P: Heavy metal-induced Ca2+ release from sarcoplasmic reticulum. Biol. Chem. (1988) 263:18785–18792.
  • TRIMM JL, SALAMA G, ABRAMSON JJ: Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. Biol. Chem. (1986) 261:16092–16098.
  • SALAMA G, ABRAMSON JJ: Silver ions trigger Ca2+ release by acting at the apparent physiological release site in sarcoplasmic reticulum. Biol. Chem. (1984) 259:13363–13369.
  • ABRAMSON JJ, TRIMM JL, WEDEN L, SALAMA G: Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc. Nati Acad. Sci. USA (1983) 80:1526–1530.
  • ZUCCHI R, RONCA-TESTONI S: The sarcoplasmic reticulum Ca2+ channel/ ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol. Rev (1997) 49(1):1–51.
  • •The most comprehensive review on the pharmacology of the ryanodine receptor.
  • NIHONYANAGI K, OBA T: Gold ion inhibits silver ion induced contracture and activates ryanodine receptors in skeletal muscle. Eur. Pharmacol (1996) 311(2-3):271–276.
  • TUPLING R, GREEN H: Silver ions induce Ca2+ release from the SR M vitro by acting on the Ca2+ release channel and the Ca2+ pump. Appl. Physic]. (2002) 92:1603–1610.
  • KANGJJ, LIU SH, CHEN IL, CHENG YW, LIN-SHIAU SY: Comparative studies on the induction of muscle contracture in mouse diaphragm and Ca2+release from sarcoplasmic reticulum vesicles by organotin compounds. Pharmacol Toxicol (1998) 82(1):23–27.
  • EMMICK JT, KWON S, BIDASEE KR, BESCH KT, BESCH HR Jr: Dual effect of suramin on calcium fluxes across sarcoplasmic reticulum vesicle membranes. J. Pharmacol Exp. Ther. (1994) 269(2):717–724.
  • SUKO J, HELLMANN G, DROBNY H: Short- and long-term functional alterations of the skeletal muscle calcium release channel (ryanodine receptor) by suramin: apparent dissociation of single channel current recording and [31-]-ryanodine binding. Mel Pharmacol (2001) 59(3):543–556.
  • BLONDEL O, TAKEDA J, JANSSEN H, SEINO S, BELL GI: Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3 R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J. Biol. Chem. (1993) 268(15):11356–11363.
  • DIETRICH A, BRAZIL D, JENSEN ON et al.: Isoprenylation of the G protein y subunit is both necessary and sufficient for Py dimer-mediated stimulation of phospholipase C. Biochemistry (1996) 35(48):15174–15182.
  • HARDIE RC, RAGHU P: Activation of heterologously expressed Drosophila TRPL channels: Ca2+ is not required and InsP3 is not sufficient. Cell Cakium (1998) 24(3):153–163.
  • KOGANEZAWA M, SHIMADA I: Inositol 1,4,5-trisphosphate transduction cascade in taste reception of the fleshfly, Boettcherisca peregrina. Neurobiol (2002) 51(1):66–83.
  • WONG GT, GANNON KS, MARGOLSKEE RF: Transduction of bitter and sweet taste by gustducin. Nature (1996) 381:796–800.
  • SPIELMAN AT, NAGAI H, SUNAVALA G et al.: Rapid kinetics of second messengerproduction in bitter taste. km J. Physic] (1996) 270:C926–C931.
  • MAYRLEITNER M, SCHAFER R, FLEISCHER S: IP, receptor purified from liver plasma membrane is an (1,4,5)IP3 activated and (1,3,4,5)IP4 inhibited calcium permeable ion channel. Cell Cakium (1995) 17(2):141–153.
  • HAGAR RE, BURGSTAHLER AD, NATHANSON MH, EHRLICH BE: Type III InsP, receptor channel stays open in the presence of increased calcium. Nature (1998) 396(6706):81–84.
  • MICHIKAWA T, HIROTA J, KAWANO S et al.: CaM mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron (1999) 23:1–10.
  • MATIFAT F, HAGUE F, BROLE G, COLLIN T: Regulation of InsP3-mediated Ca2±release by CaMKII in Xenopus oocytts. Pflugers Archly. Eur. Physiol (2001) 441(6):796–801.
  • NAKAGAWA T, OKANO H, FURUICHI T, ARUGA J, MIKOSHIBA K: The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Pim Natl. Acad. Sd. USA (1991) 88:6244–6248.
  • NIKASHIN AB, NEYLON KB, BOBIK A, TKACHUK VA: Regulation of inosito1-1,4,5-triphosphate receptor by Gi-protein. Raw Zh. Int. M Sechenova (1999) 85(8):1011–1021.
  • MAES K, MISSIAEN L, PARYSJB al: Adenine-nucleotide binding sites on the inositol 1,4,5-trisphosphate receptor bind caffeine, but not adenophostin A or cyclic ADP-ribose. Cell Calcium (1999) 25(2):143–152.
  • WOJCIKIEWICZ RJ, LUO SG: Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells. j. Biol. Chem. (1998) 273(10):5670–5677.
  • HAUG LS, JENSEN V, HVALBY O, WALAAS SI, OSTVOLD AC: Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases M vitro and in rat cerebellar slices in situ. J. Biol. Chem. (1999) 274(11):7467–7473.
  • MATTER N, RITZ MF, FREYERMUTH S, ROGUE P, MALVIYA AN: Stimulation of nuclear protein kinase C leads to phosphorylation of nuclear inositol 1, 4,5-trisphosphate receptor and accelerated calcium release by inositol 1,4,5-trisphosphate from isolated rat liver nuclei. Biol. Chem. (1993) 268(1):732–736.
  • STRIGGOW F, EHRLICH BE: Regulation of intracellular calcium release channel function by arachidonic acid and leukotriene B4. Biochem. Biophys. Res. Commun. (1997) 237(2):413–418.
  • MUTO A, MIKOSHIBA K: Activation of inositol 1,4,5-trisphosphate receptors induces transient changes in cell shape of fertilized Xenopus eggs. Cell Motil. Cytoskeleton (1998) 39(3):201–208.
  • BEECROFT MD, MARCHANT JS, RILEY AM: Acyclophostin: a ribose-modified analog of adenophostin A with high affinity for inositol 1,4,5-trisphosphate receptors and pH-dependent efficacy. MM. Pharmacol. (1999) 55:109–117.
  • GAFNI J, MUNSCH JA, LAM TH et al.: Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron (1997) 19(3):723–733.
  • MIYAMOTO S, IZUMI M, HORT M, KOBAYASHI M, OZAKI H, KARAKI H: Xestospongin C, a selective and membrane-permeable inhibitor of IP 3 receptor, attenuates the positive inotropic effect of alpha-adrenergic stimulation in guinea-pig papillary muscle. Br. Pharmacol (2000) 130(3):650–654.
  • SCHALOSKE R, SCHLATTERER C, MALCHOW DA: Xestospongin C-sensitive Ca2+ store is required for cAMP-induced Ca2+ influx and cAMP oscillations in Dictyostelium. J. Biol. Chem. (2000) 275(12):8404–8408.
  • OKA T, SATO K, HORI M, OZAKI H, KARAKI H: Xestospongin C, a novel blocker of IP, receptor, attenuates the increase in cytosolic calcium level and degranulation that is induced by antigen in RBL-2H3 mast cells. Br: J. Pharmacol (2002) 135(8):1959–1966.
  • CASTONGUAY A, ROBITAILLE R: Xestospongin C is a potent inhibitor of SERCA at a vertebrate synapse. Cell Calcium (2002) 32(1):39–47.
  • SOLOVYOVA N, FERNYHOUGH P, GLAZNER G, VERKHRATSKY A: Xestospongin C empties the ER calcium store but does not inhibit InsP, -induced Ca2+ release in cultured dorsal root ganglia neurones. Cell Cakium (2002) 32(1):49–52.
  • DE SMET P, PARYS JB, CALLEWAERT G et al.: Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca2+ pumps. Cell Calcium (1999) 26(1-2):9–13.
  • IWASAKI H, MORI Y, HARA Y, UCHIDA K, ZHOU H, MIKOSHIBA K: 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4, 5-trisphosphate receptors. Receptors Channels (2001) 7(6):429–439.
  • BOOTMAN MD, COLLINS TJ, MACKENZIE L, RODERICK HL, BERRIDGE MJ, PEPPIATT CM: 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB (2002) 16(10):1145–1150.
  • BISHARA NB, MURPHY TV, HILL MA: Capacitative Ca2+ entry in vascular endothelial cells is mediated via pathways sensitive to 2 aminoethoxydiphenyl borate and xestospongin C. Br. J. Pharmacol (2002) 135(1):119–128.
  • MA HT, VENKATACHALAM K, PARYS JB, GILL DL: Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. j. Biol. Chem. (2002) 277(9):6915–6922.
  • WANG Y, DESHPANDE M, PAYNE R: 2-Aminoethoxydiphenyl borate inhibits phototransduction and blocks voltage-gated potassium channels in Limulus ventral photoreceptors. Cell Cakium (2002) 32(4):209–216.
  • SOULSBY M. DWOJCIKIEWICZ RJH: 2-Aminoethoxydiphenyl borate inhibits inositol 1,4,5-trisphosphate receptor function, ubiquitination and downregulation, but acts with variable characteristics in different cell types. Cell Calcium (2002) 32(4):175–181.
  • MCCORMICK J, LI Y, MCCORMICK K et al.: Structure and total synthesis of HF-7, a neuroactive glyconucleoside disulfate from the funnel-web spider Hololena curta. Am. Chem. Soc. (1999) 121(24):5661–5665.
  • SKEIE GO, MYGLAND A, TREVES S, GILHUS NE, AARLIJA, ZORZATO F: Ryanodine receptor antibodies in myasthenia gravis: epitope mapping and effect on calcium release in vitro. Musde Nerve (2003) 27(1):81–89.
  • DEL MAR GONZALEZ-BARROSO M, RICQUIER D, CASSARD-DOULCIER AM: The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obes. Rev. (2000) 1(2):61–72.
  • MOONGA BS, LI S, IQBAL J et al: Ca2+ influx through the osteoclastic plasma membrane ryanodine receptor. Am.,/ Physiol Renal Physiol (2002) 282 (5) : F921–F932.
  • ZAIDI M, MOONGA BS, ADEBANJO OA: Novel mechanisms of calcium handling by the osteoclast: a review-hypothesis. Proc. Assoc. Am. Physicians (1999) 111(4):3i9-327.
  • CEDAZO-MINGUEZ A, POPES CU BO, ANKARCRONA M, NISHIMURA T, COWBURN RF: The presenilin 1 8 E9 mutation gives enhanced basal phospholipase C activity and a resultant increase in intracellular calcium concentrations. I. Biol. Chem. (2002) 277(39):36646–36655.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.