49
Views
7
CrossRef citations to date
0
Altmetric
Review

Toll-like receptors: emerging targets of immunomodulation

&
Pages 85-100 | Published online: 02 Mar 2005

Bibliography

  • MEDZHITOV R, JANE WAY CA Jr: Innate immunity: impact on the adaptive immune response. Curc Opin. Immunol (1997) 9:4–9.
  • MEDZHITOV R, PRESTON-HURLBURT P, JANEWAY CA Jr: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature (1997) 388:394–397.
  • LEMAITRE B, REICHHART JM, HOFFMANN JA: Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Nati Acad. Sci. USA (1997) 94:14614–14619.
  • LEMAITRE B, NICOLAS E, MICHAUT L, REICHHART JM, HOFFMANN JA: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell (1996) 86:973–983.
  • AKIRA S: Mammalian Toll-like receptors. Curr. Opin. brimunol (2003) 15:5–11.
  • MEDZHITOV R, BIRON CA: Innate immunity. Curc Opin. brimunol (2003) 15:2–4.
  • MEDZHITOV R: Toll-like receptors and innate immunity. Nat. Rev Immunol (2001) 1:135–145.
  • UNDERHILL DM: Toll-like receptors: networking for success. Ear: Immunol (2003) 33:1767–1775.
  • STENGER S, MODLIN RL: Control of Mycobacterium tuberculosis through mammalian Toll-like receptors. Curt: Opin. Immunol (2002) 14:452–457.
  • MUZIO M, BOSISIO D, POLENTARUTTI N et al.: Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. brimunol. (2000) 164:5998–6004.
  • SCHNARE M, BARTON GM, HOLT AC, TAKEDA K, AKIRA S, MEDZHITOV R: Toll-like receptors control activation of adaptive immune responses. Nat Immunol (2001) 2:947–950.
  • O'NEILL LA, FITZGERALD KA, BOWIE AG: The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol (2003) 24:286–289.
  • OSHIUMI H, MATSUMOTO M, FUNAMI K, AKAZAWA T, SEYA T: TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-3 induction. Nat. Immunol (2003) 4:161–167.
  • YAMAMOTO M, SATO S, MORI K et al.: Cutting edge: a novel To1l/IL-1 receptor domain-containing adapter that preferentially activates the IFN-I3 promoter in the Toll-like receptor signaling. Immunol (2002) 169:6668–6672.
  • YAMAMOTO M, SATO S, HEMMI H et al.: Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science (2003). (E published ahead of print).
  • PICARD C, PUEL A, BONNET M et al.: Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science (2003) 299:2076–2079.
  • KOBAYASHI K, HERNANDEZ LD, GALAN JE, JANE WAY CA Jr, MEDZHITOV R, FLAVELL RA: IRAK-M is a negative regulator of Toll-like receptor signaling. Cell (2002) 110:191–202.
  • SUZUKI N, SUZUKI S, DUNCAN GS et al.: Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature (2002) 416:750–756.
  • JANSSENS S, BEYAERT R: Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mo/. Cell(2003) 11:293–302.
  • O'NEILL LA: SIGIRR puts the brakes on Toll-like receptors. Nat. Immunol (2003) 4:823–824.
  • WALD D, QIN J, ZHAO Z et al.: SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol (2003) 4:920–927.
  • TAILLEUX L, SCHWARTZ O, HERRMANN JL et al.: DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. I Exp. Med (2003) 197:121–127.
  • MAEDA N, NIGOU J, HERRMANN JL et al.: The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. Biol. Chem (2003) 278:5513–5516.
  • GEIJTENBEEK TB, VAN VLIET SJ, KOPPEL EA et al.: Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. (2003) 197:7–17.
  • LEE SJ, ZHENG NY, CLAVIJO M, NUSSENZWEIG MC: Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun. (2003) 71:437–445.
  • LEE SJ, EVERS S, ROEDER D et al: Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science (2002) 295:1898–1901.
  • PLATT N, HAWORTH R, DARLEY L, GORDON S: The many roles of the class A macrophage scavenger receptor. Int. Rev Cytol (2002) 212:1–40.
  • PEISER L, DE WINTHER MP, MAKEPEACE K et al.: The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect. Inman. (2002) 70:5346–5354.
  • PLATT N, SUZUKI H, KURIHARA Y, KODAMA T, GORDON S: Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes M vitro. Proc. Nati Acad. Sci. USA (1996) 93:12456–12460.
  • BROWN GD, HERRE J, WILLIAMS DL, WILL MENT JA, MARSHALL AS, GORDON S: Dectin-1 mediates the biological effects of P-glucans. Exp. Med. (2003) 197:1119–1124.
  • GANTNER BN, SIMMONS RM, CANAVERA SJ, AKIRA S, UNDERHILL DM: Collaborative induction of inflammatory responses by dectin-1 and Toll-like Receptor 2. J. Exp. Med. (2003) 197:1107–1117.
  • BEUTLER B: TLR4 as the mammalian endotwdn sensor. Curi: Top. Microbial. Immunol (2002) 270:109–120.
  • MEANS TK, LIEN E, YOSHIMURA A, WANG S, GOLENBOCK DT, FENTON MJ: The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement forToll-like receptors. Immunol (1999) 163:6748–6755.
  • POLTORAK A, HEX, SMIRNOVA I et al: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in T1r4 gene. Science (1998) 282:2085–2088.
  • TAKEUCHI O, HOSHINO K, KAWAI T et al.: Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. brimunity (1999) 11:443–451.
  • SEKI E, TSUTSUI H, TSUJI NM et al.:Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. .1 Immunol (2002) 169:3863–3868.
  • EDELSON BT, UNANUE ER: MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity.' Immunol (2002) 169:3869–3875.
  • YANG KK, DORNER BG, MERKEL U et al.: Neutrophil influx in response to a peritoneal infection with Salmonella is delayed in lipopolysaccharide-binding protein or CD14-deficient mice. Immunol (2002) 169:4475–4480.
  • BIHL F, SALEZ L, BEAUBIER M et al.: Overexpression of Toll-like receptor 4 amplifies the host response to lipopolysaccharide and provides a survival advantage in transgenic mice. Immunol (2003) 170:6141–6150.
  • HAYASHI F, SMITH KD, OZINSKY A et al.: The innate immune response to bacterial flagellin is mediated by Toll-like receptor S. Nature (2001) 410:1099–1103.
  • ABEL B, THIEBLEMONT N, QUESNIAUX VJ et al: Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice.' brimunol. (2002) 169:3155–3162.
  • REILING N, HOLSCHER C, FEHRENBACH A et al.: Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis brimunol. (2002) 169:3480-3484.
  • JONES BW, MEANS TK, HELD WEIN KA et al: Different Toll-like receptor agonists induce distinct macrophage responses. Leukoc. Biol (2001) 69:1036–1044.
  • GILLERON M, QUESNIAUX VF, PUZO G: Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette-Guerin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. j. Biol. Chem. (2003), (E published ahead of print).
  • ALEXOPOULOU L, HOLT AC, MEDZHITOV R, FLAVELL RA: Recognition of double-stranded RNA and activation of NF-icB by Toll-like receptor 3. Nature (2001) 413:732–738.
  • BIEBACK K, LIEN E, KLAGGE IM et al: Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. Viral. (2002) 76:8729–8736.
  • HAEBERLE HA, TAKIZAWA R, CASOLA A et al.: Respiratory syncytial virus-induced activation of nuclear factor-KB in the lung involves alveolar macrophages and Toll-like receptor 4-dependent pathways. I Infect. Dis (2002) 186:1199–1206.
  • BAFICA A, SCANGA CA, SCHITO ML, HIENY S, SHER A: Cutting edge: in vivo induction of integrated HIV-1 expression by mycobacteria is critically dependent on Toll-like receptor 2. bninunol. (2003) 171:1123–1127.
  • LEBRON F, VASSALLO R, PURI V, LIMPER AH: Pnewnocystis carinii cell wall I3-glucans initiate macrophage inflammatory responses through NF-kB activation. J. Biol. Chem. (2003).
  • NETEA MG, VAN DER GRAAF CA, VONK AG, VERSCHUEREN I, VAN DER MEER JVV, KULLBERG BJ: The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis . Infect. Dis. (2002) 185:1483–1489.
  • SCANGA CA, ALIBERTI J, JANKOVIC D et al: Cutting edge: MyD88 is required for resistance to Toxoplasma gondiiinfection and regulates parasite-induced IL-12 production by dendritic cells." Immunol (2002) 168:5997–6001.
  • ALIBERTI J, VALENZUELA JG, CARRUTHERS VB et al.: Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat. Immunol (2003) 4:485–490.
  • COELHO PS, KLEIN A, TALVANI A et al.: Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzitrypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-y-primed-macrophages. I Leukoc. Biol. (2002) 71:837–844.
  • MAGEZ S, STIJLEMANS B, BARAL T, DE BAETSELIER P: VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes Infect. (2002) 4:999–1006.
  • ADACHI K, TSUTSUI H, KASHIWAMURA S et al.: Plasmodium berghei infection in mice induces liver injury by an IL-12- and Toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol. (2001) 167:5928–5934.
  • BULUT Y, FAURE E, THOMAS Let al.:Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. I Immunol (2002) 168:1435–1440.
  • COSTA CP, KIRSCHNING CJ, BUSCH D et al.: Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae. Eur: I Immunol (2002) 32:2460–2470.
  • VABULAS RM, AHMAD-NEJAD P, GHOSE S, KIRSCHNING CJ, ISSELS RD, WAGNER H: Hsp70 as endogenous stimulus of theToll/ interleukin-1 receptor signal pathway. J.Biol. Chem (2002) 277:15107–15112.
  • KIRSCHNING CJ, SCHUMANN RR: TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr. Top. Microbiol Immunol (2002) 270:121–144.
  • ASEA A, REHLI M, KABINGU E et al.: Novel signal transduction pathway utilized by extracellular Hsp70: role of Toll-like receptor (TLR) 2 and TLR4. I Biol. Chem. (2002) 277:15028–15034.
  • HABICH C, BAUMGART K, KOLB H, BURKART V: The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. Immunol (2002) 168:569–576.
  • BAUSINGER H, LIPSKER D, ZIYLAN U et al: Endotwdn-free heat-shock protein 70 fails to induce APC activation. Eur. Immunol (2002) 32:3708–3713.
  • AOSAI F, CHEN M, KANG HK et al.: Toxoplasma gondli-derived heat shock protein Hsp70 functions as a B cell mitogen. Cell Stress Chaperones (2002) 7:357–364.
  • TSUTSUMI-ISHII Y, NAGAOKA I: Modulation of human I3-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. .1. Immunol (2003) 170:4226–4236.
  • BIRAGYN A, RUFFINI PA, LEIFER CA et al: Toll-like receptor 4-dependent activation of dendritic cells by I3-defensin 2. Science (2002) 298:1025–1029.
  • TERMEER C, BENEDIX F, SLEEMAN J et al.: Oligosaccharides of hyaluronan activate dendritic cells viaToll-like receptor 4. J. Exp. Med. (2002) 195:99–111.
  • TERMEER C, SLEEMAN JP, SIMON JC: Hyaluronan - magic glue for the regulation of the immune response? Trends Immunol (2003) 24:112–114.
  • TEDER P, VANDIVIER RW et al: Resolution of lung inflammation by CD44. Science (2002) 296:155–158.
  • MATZINGER P: The danger model: a renewed sense of self. Science (2002) 296:301–305.
  • ULEVITCH RJ,TOBIAS PS: Recognition of Gram-negative bacteria and endotwdn by the innate immune system. Curr. Opin. Immunol. (1999) 11:19–22.
  • KAWAI T, TAKEUCHI O, FUJITA T et al: Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. Immunol (2001) 167:5887–5894.
  • MUTA T, TAKESHIGE K: Essential rolesof CD14 and lipopolysaccharide-binding protein for activation of Toll-like receptor (TLR)2 as well as TLR4 Reconstitution of TLR2- and TLR4-activation by distinguishable ligands in LPS preparations. Eur. Biochem. (2001) 268:4580–4589.
  • SCHRODER NW, MORATH S, ALEXANDER C et al.: Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved." Biol. Chem. (2003) 278:15587–15594.
  • OGAWA T, ASAI Y, SAKAI Y et at Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206-1. FEMS Immunol Med. Microbiol (2003) 36:1–7.
  • LAGADEC P, RAYNAL S, LIEUBEAU B et al.: Evidence for control of nitric oxide synthesis by intracellular transforming growth factor-IM in tumor cells. Implications for tumor development. Ant. Pathol (1999) 154:1867–1876.
  • ONIER N, HILPERT S, REVENEAU S et al.: Expression of inducible nitric oxide synthase in tumors in relation with their regression induced by lipid A in rats. Int. Cancer (1999) 81:755–760.
  • ONIER N, HILPERT S, ARNOULD L et al.: Cure of colon cancer metastasis in rats with the new lipid A OM 174. Apoptosis of tumor cells and immunization of rats. Clin. Exp. Metastasis (1999) 17:299–306.
  • THOMA-USZYNSKI S, KIERTSCHER SM, OCHOA MT et at: Activation of Toll-like receptor 2 on human dendritic cells triggers induction of IL-12, but not IL-10. J. Inmunol (2000) 165:3804–3810.
  • TAKEUCHI O, KAWAI T, MUHLRADT PF et at: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol (2001) 13:933–940.
  • MORR M, TAKEUCHI O, AKIRA S, SIMON MM, MUHLRADT PF: Differential recognition of structural details of bacterial lipopeptides by Toll-like receptors. Eur. lnmunol (2002) 32:3337–3347.
  • TAKEUCHI O, SATO S, HORIUCHIT SR et al.: Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J.Immunol. (2002) 169:10–14.
  • MCCURDY JD, OLYNYCH TJ, MAHER LH, MARSHALL JS: Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. Immunol (2003) 170: 1625-1629.
  • CHAMAILLARD M, HASHIMOTO M, HORIE Y et al.: An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol (2003) 4:702–707.
  • ROETHLISBERGER P, IIDA-TANAKA N, HOLLEMEYER K, HEINZLE E, ISHIZUKA I, FISCHERW: Unique poly(glycerophosphate) lipoteichoic acid and the glycolipids of a Streptococcussp. closely related to Streptococcus pneumoniae. Ear. Biochem (2000) 267:5520–5530.
  • SCHWARZ K, STORNI T, MANOLOVAV et al: Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur. Immunol (2003) 33:1465–1470.
  • MEANS TK, HAYASHI F, SMITH KD, ADEREM A, LUSTER AD: The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. Immunol (2003) 170:5165–5175.
  • MIZEL SB, HONKO AN, MOORS MA, SMITH PS, WEST AP: Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/To11-like receptor 4 complexes. Immunol (2003) 170:6217–6223.
  • HEMMI H, TAKEUCHI O, KAWAI T et al: A Toll-like receptor recognizes bacterial DNA. Nature (2000) 408:740–745.
  • BANDHOLTZ L, GUO Y, PALMBERG C et al: Hsp90 binds CpG oligonucleotides directly: implications for Hsp90 as a missing link in CpG signaling and recognition. Cell Mol Life Sci. (2003) 60:422–429.
  • KAWASAKI K, NOGAWA H, NISHIJIMA M: Identification of mouse MD-2 residues important for forming the cell surface TLR4-MD-2 complex recognized by anti-TLR4-MD-2 antibodies, and for conferring LPS and taxol responsiveness on mouse TLR4 by alanine-scanning mutagenesis." Immunol (2003) 170:413–420.
  • WANG J, KOBAYASHI M, HAN M et al.:MyD88 is involved in the signalling pathway for Taxol-induced apoptosis and TNF-a expression in human myelomonocytic cells. Br. J Haematol (2002) 118:638–645.
  • PERERA PY, MAYADAS TN, TAKEUCHI O et al: CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression.' Immunol (2001) 166:574–581.
  • HEMMI H, KAISHO T, TAKEUCHI O et al.: Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol (2002) 3:196–200.
  • CAR BD, ENG VM, SCHNYDER Bet al.: Role of interferon-yin interleukin 12-induced pathology in mice. Am.j Pathol (1995) 147:1693–1707.
  • GUTIERREZ-RAMOS JC, BLUETHMANN H: Molecules and mechanisms operating in septic shock: lessons from knockout mice. Immunol Today (1997) 18:329–334.
  • BEUTLER B: Innate immune sensing of microbial infection: the mechanism and the therapeutic challenge. Wien Med. Wochenschr. (2002) 152:547–551.
  • BEUTLER B: Endotoxin antagonism: conceptual basis and therapeutic potential. Expert Opin. Titer. Targets (2002) 6:147–158.
  • WEIGHARDT H, KAISER-MOORE S, VABULAS RM, KIRSCHNING CJ, WAGNER H, HOLZMANN B: Cutting edge: myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. Immunol (2002) 169:2823–2827.
  • ULEVITCH RJ: New therapeutic targets revealed through investigations of innate immunity. Grit. Care Merl (2001) 29:S8-12. los. CALANDRA T, BOCHUD PY, HEUMANN D: Cytokines in septic shock. Carr: Clin. Top. Infect. D AK (2002) 22:1–23.
  • ROGER T, DAVID J, GLAUSER MP, CALANDRA T: MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature (2001) 414:920–924.
  • SCHJETNE KW, THOMPSON KM, NILSEN N et al: Cutting edge: link between innate and adaptive immunity: Toll-like receptor 2 internalizes antigen for presentation to CD4(+) T cells and could be an efficient vaccine target. Immunol (2003) 171:32-36. los. KRIEG AM: CpG motifs in bacterial DNA and their immune effects. Ann. Rev Immunol (2002) 20:709–760.
  • GILLIET M, BOONSTRA A et al.: The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. " Exp. Med. (2002) 195:953–958.
  • HARTE MT, HAGA IR, MALONEY G et al.: The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. Exp. Med. (2003) 197:343–351.
  • MURABAYASHI N, KURITA-TANIGUCHI M, AYATA M, MATSUMOTO M, OGURA H, SEYA T: Susceptibility of human dendritic cells (D Cs) to measles virus (MV) depends on their activation stages in conjunction with the level of CDw150: role of Toll stimulators in DC maturation and MV amplification. Microbes Infect. (2002) 4:785–794.
  • SCHIAVONI G, MATTEI F, SESTILI P et al: ICSBP is essential for the development of mouse Type I interferon-producing cells and for the generation and activation of CD8a() dendritic cells. Exp. Med. (2002) 196:1415–1425.
  • ALCAMI A: Structural basis of the herpesvirus M3-chemokine interaction. Trends Microbial. (2003) 11:191–192.
  • ALCAMI A: Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol (2003) 3:36–50.
  • HUBEAU C, SINGER M, LAGRANDERIE M, MARCHAL G,VARGAFTIG B: Extended freeze-dried Mycobacterium bovis Bacillus Calmette-Guerin induces the release of interleukin-12 but not tumour necrosis factor-a by alveolar macrophages, both in vitro and in vivo. Clin. Exp. Allergy (2003) 33:386–393.
  • KRIEG AM: CpG motifs: the active ingredient in bacterial extracts? Nat. Med. (2003) 9:831–835.
  • VON HERRATH MG, BOT A: Immune responsiveness, tolerance and dsRNA: implications for traditional paradigms. Trends Immunol (2003) 24:289–292.
  • OKAMOTO M, SATO M: Toll-like receptor signaling in anti-cancer immunity. J. Med. Invest. (2003) 50:9–24.
  • MELIEF CJ, VAN DER BURG SH, TOES RE, OSSENDORP F, OFFRINGA R: Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol Rey (2002) 188:177–182.
  • LEADBETTER EA, RIFKIN IR, HOHLBAUM AM, BEAUDETTE BC, SHLOMCHIK MJ, MARSHAK-ROTHSTEIN A: Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature (2002) 416:603–607.
  • RIFKIN IR, MARSHAK-ROTHSTEIN A: T-bet: the Toll-bridge to class-switch recombination? Nat. Immunol (2003) 4:650–652.
  • FELDMANN M, MAINI RN: Anti-TNF-a therapy of rheumatoid arthritis: what have we learned? Ann. Rev. Immunol (2001) 19:163–196.
  • SEIBL R, BIRCHLER T, LOELIGER S et al.: Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am. I Pathol (2003) 162:1221–1227.
  • KYBURZ D, RETHAGE J, SEIBL R et al.: Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by Toll-like receptor signaling. Arthritis Rheum. (2003) 48:642–650.
  • CHOE JY, CRAIN B, WU SR, CORR M: Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by Toll-like receptor 4 signaling. J. Exp. Merl (2003) 197:537–542.
  • HERRICK CA, BOTTOMLY K: To respond or not to respond: T cells in allergic asthma. Nat. Rev Immunol (2003) 3:405–412.
  • EISENBARTH SC, PIGGOTT DA, HULEATT JW, VISINTIN I, HERRICK CA, BOTTOMLY K: Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell Type 2 responses to inhaled antigen. I Exp. Med. (2002) 196:1645–1651.
  • LAGRANDERIE M, NAHORI MA, BALAZUC AM et al.: Dendritic cells recruited to the lung shortly after intranasal delivery of Mycobacterium bovis BCG drive the primary immune response towards a Type 1 cytokine production. Immunology (2003) 108:352–364.
  • LIU N, OHNISHI N, NIL, AKIRA S, BACON KB: CpG directly induces T-bet expression and inhibits Ig(y1) and Ig(epsilon) switching in B cells. Nat. Immunol (2003). (E published ahead of print).
  • ORTEGA-CAVA CE ISHIHARA S, RUMI MA et al.: Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. Immunol (2003) 170:3977–3985.
  • OTTE JM, ROSENBERG IM, PODOLSKY DK: Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology (2003) 124:1866–1878.
  • ZEUKE S, ULMER AJ, KUSUMOTO S, KATUS HA, HEINE H: TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovasc. Res. (2002) 56:126–134.
  • LAMAN JD, SCHONEVELD AH, MOLL FL, VAN MEURS M, PASTERKAMP G: Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am. J. Cardiol. (2002) 90:119–123.
  • BOEKHOLDT SM, AGEMA WR, PETERS RJ et al.: Variants of Toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation (2003) 107:2416–2421.
  • HOLMLUND L, CORTES TORO V, IVERFELDT K: Additive effects of amyloid (3 fragment and interleukin-113 on interleukin-6 secretion in rat primary glial cultures. Intl: Mol Med. (2002) 10:245–250.
  • REINDL M, LUTTEROTTI A, INGRAM J et al.: Mutations in the gene for Toll-like receptor 4 and multiple sclerosis. Tissue Antigens. (2003) 61:85–88.
  • PRINZ M, HEIKENWALDER M, SCHWARZ P, TAKEDA K, AKIRA S, AGUZZI A: Prion pathogenesis in the absence of Toll-like receptor signalling. EMBO Rep. (2003) 4:195–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.