51
Views
5
CrossRef citations to date
0
Altmetric
Review

Ligands for kainate subtype glutamate receptors

&
Pages 471-486 | Published online: 22 Apr 2005

Bibliography

  • SHERIDAN PH, WEIGHT FE HERMAN BH: Molecular Pharmacology and Physiology of Glutamate Receptors. In: Glutamate and Addiction. Herman B (Ed.) Humana Press, Totowa, USA (2003):3–71.
  • BIGGE CF: Ionotropic glutamate receptors. Cum Opin. Chem. Biol. (1999) 3:441-447. Despite useful information in this review, Figure 3 is incorrect, as is the statement on page 442 concerning conserved contact residues.
  • KOLES L, WIRKNER K, ILLES P: Modulation of ionotropic glutamate receptor channels. Neurochem. Res. (2001) 26:925–932.
  • •A good summary of what is known about the modulation of iGluRs in the CNS by phosphorylation.
  • FAROOQUI AA, HORROCKS LA: Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Brain Res. Rev (1991) 16:171–191.
  • CHOI DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron (1988) 1:623–634.
  • LODGE D: Subtypes of glutamate receptors: Historical perspectives on their pharmacological differentiation. In: The ionotropic glutamate receptors Wenthold RI (Ed.) Humana Press, New Jersey, USA (1997):1–38.
  • HARRIS EW: Subtypes of Glutamate Receptors: Pharmalogical Classification. In: CNS neurotransmitters and neuromodulators glutamate Stone TW (Ed.) CRC Press, New York, USA (1995):95–126.
  • STRICKER NL, HUGANIR R AMPA/ kainate receptors. In: Receptor ant Ion-Channel Trafficking. Henley J (Ed.) Oxford University Press, New York, USA (2002):131–155.
  • MYERS SJ, DINGLEDINE R, BORGES K: Genetic regulation of glutamate receptor ion channels. Ann. Rev Pharmacol Toxicol (1999) 39:221–241.
  • WATKINS JC, KROGSGAARD-LARSEN P, HONORE T: Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci. (1990) 11:25–33.
  • DINGLEDINE R, BORGES K, BOWIE D,TRAYNELIS SF: The glutamate receptor ion channels. Pharmacol Rev (1999) 51:7–61.
  • ROSENMUND C, STERN-BACH Y, STEVENS CF: The tetrameric structure of a glutamate receptor channel. Science (1998) 280:1596–1599.
  • LEUSCHNER WD, HOCH W: Subtype-specific assembly of a-amino-3-hydroxy-5-methy1-4-isoxazole propionic acid receptor subunits is mediated by their N-terminal domains. J. Biol. Chem. (1999) 274:16907–16916.
  • STERN-BACH Y, BETTLER B, HARTLEY M et al.: Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron (1994) 13:1345–1357.
  • KEINANEN K, ARVOLA M, KUUSINEN A, JOHNSON M: Ligand recognition in glutamate receptors: insights from mutagenesis of the soluble alpha-amino-3-hydroxy-5-methy1-4-isoxazole propionic acid (AMPA)-binding domain of glutamate receptor type D (GluR-D). Biochem. Soc. Trans. (1997) 25:835–838.
  • KUUSINEN A, ARVOLA M, KEINANEN K: Molecular dissection of the agonist binding site of an AMPA receptor. Embo. J. (1995) 14:6327–6332.
  • KEINANEN K, JOUPPILA A, KUUSINEN A: Characterization of the kainate-binding domain of the glutamate receptor G1uR-6 subunit. Biochem. (1998) 330\(Pt3):1461–1467.
  • ARMSTRONG N, SUN Y, CHEN GQ, GOUAUX E: Structure of a glutamate-receptor figand-binding core in complex with kainate. Nature (1998) 395:913–917.
  • ••The first successful crystal structure ofiGiuR2 construct with kainic acid is disclosed.
  • SUN Y, OLSON R, HORNING M et al.: Mechanism of glutamate receptor desensitization. Nature (2002) 417:245–253.
  • ••A great discussion of the mechanism ofiGluRs activation and desensitisation.
  • ARMSTRONG N, GOUAUX E: Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the G1uR2 ligand binding core. Neuron (2000) 28:165–181.
  • ••An hypothesis for the activation of iGluRsis proposed, based on the X-ray structures of iGiuR2 construct with agonists kainate, AMPA, glutamate and antagonist DNQX.
  • FURUKAWA H, GOUAUX E: Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 figand-binding core. Embo. .1. (2003) 22:2873–2885.
  • HOGNER A, KASTRUP JS, JIN R et al.:Structural basis for AMPA receptor activation and figand selectivity: crystal structures of five agonist complexes with the G1uR2 figand-binding core. .1. Ma Biol. (2002) 322:93–109.
  • HOGNER A, GREENWOOD JR, LILJEFORS T et al.: Competitive antagonism of AMPA receptors by ligands of different classes: crystal structure of ATPO bound to the G1uR2 ligand-binding core, in comparison with DNQX. Med. Chem. (2003) 46:214–221.
  • JIN R, HORNING M, MAYER ML, GOUAUX E: Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of G1uR2 and quisqualate. Biochemistry (2002) 41:15635–15643.
  • JIN R, BANKE TG, MAYER ML, TRAYNELIS SF, GOUAUX E: Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. (2003) 6:803–810.
  • KASPER C, LUNN ML, LILJEFORS Tet al.: G1uR2 ligand-binding core complexes: importance of the isoxazolol moiety and 5-substituent for the binding mode of AMPA-type agonists. FEBS Lett. (2002) 531:173–178.
  • HOLLMANN M, HEINEMANN S: Cloned glutamate receptors. Ann. Rev Neurosci. (1994) 17:31–108.
  • WERNER P, VOIGT M, KEINANEN K, WISDEN W, SEEBURG PH: Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature (1991) 351:742–744.
  • HERB A, BURNASHEV N, WERNER P et al.: The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron (1992) 8:775–785.
  • KAMBOJ RK, SCHOEPP DD, NUTT S et al.: Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. Neurochem. (1994) 62:1–9.
  • PATERNAIN AV, HERRERA MT, NIETO MA, LERMA J: G1uR5 and G1uR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. Neurosci. (2000) 20:196–205.
  • CUT C, MAYER ML: Heteromeric kainate receptors formed by the coassembly of G1uR5, G1uR6, and G1uR7. I NeuroscL (1999) 19:8281–8291.
  • BLEAKMAN D, LODGE D: Neuropharmacology of AMPA and kainate receptors. Neuropharmacology (1998) 37:1187–1204.
  • ••An excellent review of the development ofAMPAR and KAR neuropharmacology.
  • CHITTAJALLU R, BRAITHWAITE SP, CLARKE VR, HENLEY JM: Kainate receptors: subunits, synaptic localization and function. Trends Phannacol ScL (1999) 20:26–35.
  • BETTLER B, BOULTER J, HERMANS-BORGMEYER I et al.: Cloning of a novel glutamate receptor subunit, G1uR5: expression in the nervous system during development. Neuron (1990) 5:583–595.
  • RUSCHEWEYH R, SANDKUHLER J: Role of kainate receptors in nociception. Brain Res. Brain Res. Rev (2002) 40:215–222.
  • LERMA J, PATERNAIN AV, RODRIGUEZ-MORENO A, LOPEZ-GARCIA JC: Molecular physiology of kainate receptors. Physiol Rev (2001) 81:971–998.
  • ••A great review of kainate receptorsincluding detailed information of KAR molecular biology, functional properties and physiological roles.
  • CLARKE VR, BALLYK BA, HOO KH et al.: A hippocampal G1uR5 kainate receptor regulating inhibitory synaptic transmission. Nature (1997) 389:599–603.
  • RODRIGUEZ-MORENO A, HERRERAS 0, LERMA J: Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron (1997) 19:893–901.
  • RODRIGUEZ-MORENO A, LERMA J: Kainate receptor modulation of GABA release involves a metabotropic function. Neuron (1998) 20:1211–1218.
  • CASTILLO PE, MALENKA RC, NICOLL RA: Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature (1997) 388:182–186.
  • VIGNES M, BLEAKMAN D, LODGE D, COLLINGRIDGE GL: The synaptic activation of the G1uR5 subtype of kainate receptor in area CA3 of the rat hippocampus. Neuropharmacology (1997) 36:1477–1481.
  • VIGNES M, COLLINGRIDGE GL: The synaptic activation of kainate receptors. Nature (1997) 388:179–182.
  • LERMA J: Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci. (2003) 4:481–495.
  • MURAKAMI S, TAKEMOTO T, SHIMIZU Z: The effective principle of Digenea simplex Aq. I. Separation of the effective fraction by liquid chromatography. Yakugaku Zasshi (1953) 73:1026–1028.
  • YOUNG AB, FAGG GE: Excitatory aminoacid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharinacol ScL (1990) 11:126–133.
  • BRAUNER-OSBORNE H, EGEBJERG J, NIELSEN EO, MADSEN U, KROGSGAARD-LARSEN P: Ligands for glutamate receptors: design and therapeutic prospects.' Med. Chem. (2000) 43:2609–2645.
  • ••A great summary of the therapeuticdevelopment of GluR ligands.
  • SONNENBERG JD, KOCH HP, WILLIS CL et al: The role of the C-4 side chain of kainate and dihydrokainate in EAA receptor and transporter selectivity. Bioorg. Med. Chem. Lett. (1996) 6:1607–1612.
  • BALDWIN JE, FRYER AM, PRITCHARD GJ: Parallel synthesis of novel heteroaromatic acromelic acid analogues from kainic acid. I. Org. Chem. (2001) 66:2588–2596.
  • HUETTNER JE: Functional Properties of Kainate Receptors. In: The Ionomopic Glutamate Receptors. Wenthold RI (Ed.) Humana Press, New Jersey, USA (1997):265–284.
  • WONG LA, MAYER ML, JANE DE, WATKINS JC: Willardiines differentiate agonist binding sites for kainate- versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons. Neurosci . (1994) 14:3881–3897.
  • HAWKINS LM, BEAVER KM, JANE DE et al: Characterization of the pharmacology and regional distribution of (3)- [3H]-5-fluorowillardiine binding in rat brain. Br. Pharmacol (1995) 116:2033–2039.
  • VERDOORN TA, JOHANSEN TH, DREJER J, NIELSEN EO: Selective block of recombinant glur6 receptors by NS-102, a novel non-NMDA receptor antagonist. Ear. Pharmacol (1994) 269:43–49.
  • SCHMITZ D, MELLOR J, FRERKING M, NICOLL RA: Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc. Nati Acad. Sci. USA (2001) 98:11003–11008.
  • SMALL B, THOMAS J, KEMP M et al.: LY339434, a G1uR5 kainate receptor agonist. Neuropharmacology (1998) 37:1261–1267.
  • MOLDRICH RX, CHEUNG NS, PASCOE CJ et al.: Excitotoxic profile of LY-339434, a G1uR5 agonist, in cultured murine cortical neurons. Brazil Res. (2000) 862:270–275.
  • DONEVAN SD, BEG A, GUNTHER JM, TWYMAN RE: The methylglutamate, SYM-2081, is a potent and highly selective agonist at kainate receptors. Pharmacol Exp. Ther. (1998) 285:539–545.
  • BUNCH L, JOHANSEN TH, BRAUNER -OSBORNE H et al.: Synthesis and receptor binding affinity of new selective G1uR5 ligands. Bioorg. Med. Chem. (2001) 9:875–879.
  • VALGEIRSSON J, CHRISTENSEN JK,KRISTENSEN AS et al.: Synthesis and M vitro pharmacology at AMPA and kainate preferring glutamate receptors of 4-heteroarylmethylidene glutamate analogues. Bioorg. Med. Chem. (2003) 11:4341–4349.
  • STENSBOL TB, BORRE L, JOHANSEN TN et al.: Resolution, absolute stereochemistry and molecular pharmacology of the enantiomers of ATPA. Eur.J Pharmacol (1999) 380:153–162.
  • HOO K, LEGUTKO B, RIZKALLA G et al.: [3I-1]-ATPA: a high affinity ligand for G1uR5 kainate receptors. Neuropharmacology (1999) 38: 1811-1817.
  • BREHM L, GREENWOOD JR, HANSEN KB et al.: (3)-2-Amino 3 (3 hydroxy-7,8-dihydro-6H-cycloheptardlisoxazol-4-yl)propionic acid, a potent and selective agonist at the G1uR5 subtype of ionotropic glutamate receptors. Synthesis, modeling, and molecular pharmacology. I Med. Chem. (2003) 46:1350–1358.
  • STENSBOL TB, JENSEN HS, NIELSEN B et al: Stereochemistry and molecular pharmacology of (.9-thio-ATPA, a new potent and selective G1uR5 agonist. Eur. Pharmacol (2001) 411:245–253.
  • BLEAKMAN R, SCHOEPP DD, BALLYK B et al: Pharmacological discrimination of G1iR5 and G1uR6 kainate receptor subtypes by (35,4aR,6R,8aR) 6 [2 (1(2)H-tetrazole-5-yOethyl]decahyd roisdoquinoline-3 carboxylic-acid. Ma Pharmacol (1996) 49:581–585.
  • HAMPSON DR, MANALO JL: The activation of glutamate receptors by kainic acid and domoic acid. Nat. Toxins (1998) 6:153–158.
  • BAKER SR, BLEAKMAN D, EZQUERRAJet al: 4-Alkylidenyl glutamic acids, potent and selective G1uR5 agonists. Bioorg. Med. Chem. Lett. (2000) 10:1807–1810.
  • PEDREGAL C, COLLADO I, ESCRIBANO A et al.: 4-Alkyl- and 4-cinnamylglutamic acid analogues are potent G1uR5 kainate receptor agonists. .1. Med. Chem. (2000) 43:1958–1968.
  • BLEAKMAN D, OGDEN AM, ORNSTEIN PL, HOO K: Pharmacological characterization of a G1uR6 kainate receptor in cultured hippocampal neurons. Eur. Pharmacol (1999) 378:331–337.
  • JAKOBSEN B, TASKER A, ZIMMER J: Domoic acid neurotoxicity in hippocampal slice cultures. Amino Acids (2002) 23:37–44.
  • THOMAS NK, HAWKINS LM, MILLER JC et al.: Pharmacological differentiation of kainate receptors on neonatal rat spinal motoneurones and dorsal roots. Neuropharmacology (1998) 37:1223–1237.
  • JANE DE, HOO K, KAMBOJ R et al: Synthesis of willardiine and 6-azawillardiine analogs: pharmacological characterization on cloned homomeric human AMPA and kainate receptor subtypes.' Med. Chem. (1997) 40:3645–3650.
  • SWANSON GT, GREEN T, HEINEMANN SF: Kainate receptors exhibit differential sensitivities to (5)-5-iodowillardiine. Mol. Pharmacol (1998) 53:942–949.
  • SOMMER B, BURNASHEV N, VERDOORN TA et al.: A glutamate receptor channel with high affinity for domoate and kainate. Embo. J. (1992) 11:1651–1656.
  • SCHIFFER HH, SWANSON GT, HEINEMANN SF: Rat G1uR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron (1997) 19:1141–1146.
  • LEES GJ: Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs (2000) 59:33–78.
  • ••An excellent review with sufficientdiscussion of potential therapeutic applications of AIVIPARs/KARs ligands.
  • JONES KA, WILDING TJ, HUETTNER JE, COSTA AM: Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology (1997) 36:853–863.
  • WAHL P, MADSEN U, BANKE T, KROGSGAARD-LARSEN P, SCHOUSBOE A: Different characteristics of AMPA receptor agonists acting at AMPA receptors expressed in Xenopus oocytes. Eur: .1. Pharmacol (1996) 308:211–218.
  • SUN G, URETSKY NJ, WALLACE LJ et al.: Synthesis of chiral 1-(2'-amino-2'-carboxyethyl) - 1, 4-dihydro-6, 7-quinoxaline- 2,3- diones: a-amino-3-hydroxy-5 - m ethy1-4 - isoxazo lepropio nate receptor agonists and antagonists. Med. Chem. (1996) 39:4430–4438.
  • KRISTENSEN BW, NORABERG J, ZIMMER J: Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res. (2001) 917:21–44.
  • WAHL P, FRANDSEN A, MADSEN U, SCHOUSBOE A, KROGSGAARD-LARSEN P: Pharmacology and toxicology of ATOA, an AMPA receptor antagonist and a partial agonist at G1iR5 receptors. Neuropharmacology (1998) 37:1205–1210.
  • JOHANSEN TN, JANIN YL, NIELSEN B et al.: 2-Amino 3 (3 hydroxy-1,2,5-thiadiazol-4-yl)propionic acid: resolution, absolute stereochemistry and enantiopharmacology at glutamate receptors. Bioorg. Med. Chem. (2002) 10:2259–2266.
  • SHEARD OWN MJ, NIELSEN EO, HANSEN AJ, JACOBSEN P, HONORE T: 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline: a neuroprotectant for cerebral ischemia. Science (1990) 247:571–574.
  • LUBISCH W, BEHL B, HENN C et al: Pyrrolylquinoxalinediones carrying a piperazine residue represent highly potent and selective ligands to the homomeric kainate receptor G1iR5. Bioorg. Med. Chem. Lett. (2002) 12:2113–2116.
  • MORE JC, TROOP HM, DOLMAN NP, JANE DE: Structural requirements for novel willardiine derivatives acting as AMPA and kainate receptor antagonists. Br. Pharmacol (2003) 138:1093–1100.
  • MORE JC, TROOP HM, JANE DE: The novel antagonist 3-CBW discriminates between kainate receptors expressed on neonatal rat motoneurones and those on dorsal root C-fibres. Br. Pharmacol (2002) 137:1125–1133.
  • BLEAKMAN D: Kainate receptor pharmacology and physiology. Cell. Ma Life Sci. (1999) 56:558–566.
  • ••A great review of kainate receptorproperties and the pharmacology of the ligands.
  • WITKIN J, KAMINSKI R, ROGAWSKI M: Pharmacology of Glutamate Receptors. In: Glutamate and Addiction. Herman BH (Ed.) Human Press, Totowa, USA (2003):23–50.
  • O'NEILL MJ, BOGAERT L, HICKS CA et al.: LY-377770, a novel iG1u5 kainate receptor antagonist with neuroprotective effects in global and focal cerebral ischaemia. Neuropharmacology (2000) 39:1575–1588.
  • O'NEILL MJ, BOND A, ORNSTEIN PL et al.: Decahydroisoquinolines: novel competitive AMPA/kainate antagonists with neuroprotective effects in global cerebral ischaemia. Neuropharmacology (1998) 37:1211–1222.
  • SAVIDGE JR, BLEAKMAN D, BRISTOW DR: Identification of kainate receptor-mediated intracellular calcium increases in cultured rat cerebellar granule cells. Neurochem. (1997) 69:1763–1766.
  • BLEAKMAN D, BALLYK BA, SCHOEPP DD et al: Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology (1996) 35: 1689-1702.
  • PATERNAIN AV, VICENTE A, NIELSEN EO, LERMA J: Comparative antagonism of kainate-activated kainate and AMPA receptors in hippocampal neurons. Eur.j Neurosci. (1996) 8:2129–2136.
  • WILDING TJ, HUETTNER JE: Antagonist pharmacology of kainate- and alpha-amino-3-hydroxy-5-methy1-4-isoxazolepropionic acid-preferring receptors. Mol Pharmacol (1996) 49:540–546.
  • BORTOLOTTO ZA, CLARKE VR, DELANY CM et al: Kainate receptors are involved in synaptic plasticity. Nature (1999) 402:297–301.
  • SANG CN, HOSTETTER MP, GRACELY RH et al: AMPA/kainate antagonist LY-293558 reduces capsaicin-evoked hyperalgesia but not pain in normal skin in humans. Anesthesiology (1998) 89:1060–1067.
  • BECKER JW, CUNNINGHAM BA, REEKE GN, WANG JL, EDELMAN GM: The molecular structure of concanavalin A. In: Concanavalin A as a tool. Schnebli HP (Ed.) John Wiley & Sons, New York (1976):33–56.
  • •Detailed information on the biological application of Concanavalin A is provided.
  • EVERTS I, VILLMANN C, HOLLMANN M: N-Glyeosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. MM. Pharmacol (1997) 52:861–873.
  • ZORUMSKI CF, THIO LL: Properties of vertebrate glutamate receptors: calcium mobilization and desensitization. Prog. Neurobiol (1992) 39:295–336.
  • EVERTS I, PETROSKI R, KIZELSZTEIN P et al.: Lectin-induced inhibition of desensitization of the kainate receptor G1uR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. Neurosci. (1999) 19:916–927.
  • PATERNAIN AV, RODRIGUEZ-MORENO A, VILLARROEL A, LERMA J: Activation and desensitization properties of native and recombinant kainate receptors. Neuropharmacology (1998) 37:1249–1259.
  • KATO G, WEITSCH AF: Neurochemical profile of tianeptine, a new antidepressant drug. Clin. Neurophannacol (1988) 11\(Supp1.2):S43–50.
  • MOCAER E, RETTORI MC, KAMOUN A: Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin. Neuropharmacol (1988) 11\(Supp1.2):S32–42.
  • KIM YJ, SHIN MC, KIM SA et al.: Modulation of tianeptine on ion currents induced by inhibitory neurotransmitters in acutely dissociated dorsal raphe neurons of Sprague-Dawley rats. Eur . Neuropsychopharmacol (2002) 12:417–425.
  • FILLA SA, WINTER MA, JOHNSON KW et al: Ethyl (35,4aR,65,8aR) 6 (4 ethoxycar-bonylimidazol-1-ylmethyl) decahydroiso-quinoline- 3 - carboxylic ester: a prodrug of a G1uR5 kainate receptor antagonist active in two animal models of acute migraine. Med. Chem. (2002) 45:4383–4386.
  • HORN IR, MOESTRUP SK, VAN DEN BERG BM et al.: Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library. Biol. Chem. (1995) 270:11770–11775.
  • BRAITMAN DJ, COYLE JT: Inhibition of [31-1]-kainic acid receptor binding by divalent cations correlates with ion affinity for the calcium channel. Neuropharmacology (1987) 26:1247–1251.
  • MURPHY DE, SCHNEIDER J, BOEHM C, LEHMANN J, WILLIAMS M: Binding of [3H]-3-(2-carboxypiperazin-4-y0propyl-1-phosphonic acid to rat brain membranes: a selective, high-affinity ligand for N-methyl-D-aspartate receptors. J. Pharmacol Exp. Ther: (1987) 240:778–784.
  • HAMILL OP, MARTY A, NEHER E, SAKMANN B, SIGWORTH FJ: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. (1981) 391:85–100.
  • GRINVALD A, HILDESHEIM R, FARBER IC, ANGLISTER L: Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys. J. (1982) 39:301–308.
  • GRINVALD A, SALZBERG BM, LEV-RAM V, HILDESHEIM R: Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys. .1 (1987) 51:643-651.
  • KARPEN JW, SACHS AB, PASQUALE EB, HESS GP: Spectrophotometric detection of monovalent cation flux in cells: fluorescence microscope measurement of acetylcholine receptor-mediated ion flux in PC-12 cells. Anal. Biochem. (1986) 157:353–359.
  • •First fluorescence method to detect monovalent cation flux.
  • SIMMONS RM, LI DL, HOO KH et al.: Kainate G1uR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology (1998) 37:25–36.
  • IKONOMIDOU C, BOSCH F, MIKSA M et al.: Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science (1999) 283:70–74.
  • KOMURO H, RAKIC P: Modulation of neuronal migration by NMDA receptors. Science (1993) 260:95–97.
  • RZESKI W, IKONOMIDOU C, TURSKI L: Glutamate antagonists limit tumor growth. Biochem. Pharmacol (2002) 64:1195–1200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.