159
Views
59
CrossRef citations to date
0
Altmetric
Review

Block copolymer micelles as a solution for drug delivery problems

Pages 63-75 | Published online: 22 Apr 2005

Bibliography

  • MOLLER RH: In: Colloidal Carriers forControlled Drug Delivery and Targeting. Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, and CRC Press, Boca Raton, FL (1991).
  • Microparticulate Systems for the Delivery of Proteins and Vaccines. Cohen S, Bernstein H (Eds), Marcel Dekker, Inc., New York (1996).
  • Stealth Liposomes. Lasic DD, Martin F (Eds), CRC Press, Boca Raton, FL (1995).
  • TORCHILIN VP TRUBETSKOY VS: Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. (1995) 16:141–155.
  • •Important review summarising the requirements towards polymers for `steric protection' of drug carriers.
  • PALMER TN, CARIDE VJ, CALDECOURT MA, TWICKLER J, ABDULLAH V: The mechanism of liposome accumulation in infarction. Biochim. Biophys. Acta (1984) 797:363–368.
  • MAEDA H, WI] J, SAWA T, MATSUMURA Y, HOPI K: Tumor vascular permeability and the: EPR effect in macromolecular therapeutics: a review. J. Contr. Release (2000) 65:271–284.
  • ••One of key papers on the mechanism andtherapeutic significance of the enhanced permeability and retention effect.
  • TORCHILIN VP: Polymer-coated long-circulating microparticular pharmaceuticals. Microencapsulation (1998) 15:1–19.
  • GREF R, MINAMITAKE Y, PERACCHIA MT, TRUBETSKOY TORCHILIN VP LANGER R: Biodegradable long-circulating polymeric nanospheres. Science (1994) 263:1600–1603.
  • ••Important paper analysing the keyrequirements towards drug carriers for parenteral administration.
  • LIPINSKI CA, LOMBARDO F, DOMINY BW, FEENEY PJ: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. (2001) 46:3–26.
  • FERNANDEZ AM, VAN DERPOORTEN K, DASNOIS L et aL: N-Succiny141-alanyl-L-leucyl-L-alanyl-L-leucyfidoxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity./ Med. Chem. (2001): 44(22):3750–3753.
  • Techniques of Solubilization of Drugs. Yalkowsky SH (Ed.), Marcel Dekker, New York and Basel (1981).
  • Cancer Chemotherapy: Principles and Practice. Shabner BA, Collings JM (Eds), JB Lippincott Co., Philadelphia, PA 1990, USA.
  • YOKOGAWA K, NAKASHIMA E, ISHIZAKI J, MAEDA H, NAGANO T, ICHIMURA F: Relationships in the structure-tissue distribution of basic drugs in the rabbit. Pharm. Res. (1990) 7:691–696.
  • HAGELUKEN A, GRUNBAUM L, NURNBERG B, HARHAMMER R, SCHUNACK W SEIFERT R: Lipophilic (1-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem. PharmacoL (1994) 47:1789–1795.
  • LIPINSKI CA: Drug-like properties and thecauses of poor solubility and poor permeability. J. PharmacoL Toxicol Methods (2000) 44:235–249.
  • •Provides essential information regarding interrelationships between drug structure, solubility and permeability.
  • ANDREWS PR, CRAIK DJ, MARTIN JL: Functional group contributions to drug-receptor interactions. J. Med. Chem. (1984) 27:1648–1657.
  • •Provides essential information regarding interrelationships between drug structure, solubility and permeability.
  • MOTTU F, LAURENT A, RUFENACHT DA, DOELKER E: Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data. Pharm. Sci. Technol (2000) 54:456–469.
  • LASIC DD, PAPAHADJOPOULOS D: In: Medical applications of liposomes. New York: Elsevier, (1998):779.
  • THOMPSON D, CHAUBAL MV: Cyclodextrins (CDS) - excipients by definition, drug delivery systems by function (part I: injectable applications) In: Drug Delivery Technology 2 (200034–38.
  • Surfactants in Solution (vols. I-3). Mittal KL, Lindman B (Eds) Plenum Press, New York (1991).
  • LASIC DD: Mixed micelles in drug delivery. Nature (1992) 355:279–280.
  • Surfactant Systems. Attwood D, Florence AT (Eds), Chapman and Hall, London, UK (1983).
  • KABANOV AV, BATRAKOVA EV, MELIK-NUBAROV NS et al: A new class of drug carriers; micells poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood to brain./ Contr. Release (1992) 22:141–158.
  • KWON GS: Diblock copolymer nanoparticles for drug delivery. Crit. Rev. Ther. Drug Carrier Syst. (1998) 15:481–512.
  • •Key review on polymeric micelles.
  • JONES M, LEROUX J: Polymeric micelles - a new generation of colloidal drug carriers, Eur. j Pharm. Biopharm. (1999) 48:101–111.
  • •Key review on polymeric micelles.
  • TORCHILIN VP: Structure and design of polymeric surfactant-based drug delivery systems./ Contr. Release (2001) 73:137–172.
  • •Key review on polymeric micelles.
  • KWON GS, KATAOKA K: Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. (1995) 16:295–309.
  • TRUBETSKOY VS, TORCHILIN VP: Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv. Drug Deliv. Rev. (1995) 16:311–320.
  • •The first review on PEG-PE micelles.
  • ZHANG L, EISENBERG A: Multiple morphologies of 'crew-cut' aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science (1995) 268:1728–1731.
  • ••Outstanding paper on the morphology ofpolymeric micelles.
  • KWON GS, OKANO T: Soluble self-assembled block copolymers for drug delivery. Pharm. Res. (1999) 16:597–600.
  • MARTIN A: In: Physical Pharmacy, 4th Ed., Williams and Wilkins, Baltimore, MD (1993):396–398.
  • GREF R, DOMB A, QUELLEC P et al: The controlled intravenous delivery of drugs using PEG-coated sterically stabilised nanospheres. Adv. Drug Deliv. Rev. (1995) 16: 215–234.
  • HAGAN SA, COOMBES AG, GARNETT MC et al.: Polylactide-poly(ethelene glycol) copolymers as drug delivery systems, 1. Characterization of water dispersible micelle-forming systems. Langmuir (1996) 12:2153–2161.
  • INOUE T, CHEN G, NAKAMAE K, HOFFMAN AS: An AB block copolymers of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs. J. Contr. Release (1998) 51:221–229.
  • HUNTER RJ: In: Foundations of Colloid Science, vol.]. Oxford University Press, New York, (1991).
  • GAO Z, EISENBERG A: A model of micellization for block copolymers in solutions. Macromolecules (1993) 26:7353–7360.
  • MARQUES CM: Bunchy micelles. Langmuir (1997) 13:1430–1433.
  • KABANOV AV, BATRAKOVA EV, ALAKHOV VY: Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery./ Contr. Release (2002) 82:189–212.
  • •Good review on pluronic micelles.
  • KWON GS: Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst. (2003) 20(5):357–403.
  • OTSUKA H, NAGASAKI Y, KATAOKA K: PEGylated nanoparticles for biological and harmaceutical applications. Adv. Drug Deliv. Rev. (2003) 55(3):403–419.
  • ADAMS ML, LAVASANIFAR A, KWON GS: Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. (2003) 92(7):1343–1355.
  • LUKYANOV AV, TORCHILIN VP: Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs, Adv. Drug Deliv. Rev. (2004) 56:1273–1289.
  • KABANOV AV, LEMIEUX P, VINOGRADOV S, ALAKHOV V: Pluronic block copolymers: novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. (2002) 54(2):223–233.
  • KAKIZAWA Y, KATAOKA K: Block copolymer micelles for delivery of gene and related ompounds. Deliv. Rev. (2002) 54(2):203–222.
  • •This and [39-43] review various aspects of polymeric micelles.
  • GAMMAS S, SUZUKI K, SONE C, SAKURAI Y, KATAOKA K, OKANO T: Thermorespensive polymer nanoparticles with a core-shell micelle structure as site specific drug carriers. J. Contr. Release (1997) 48:157–164.
  • TORCHILIN VP, TRUBETSKOY VS, WHITEMAN KR, CALICETI P, FERRUTI P, VERONESE FM: New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci. (1995) 84:1049–1053.
  • MILLER DW, BATRAKOVA EV, WALTNER TO, ALAKHOV VY, KABANOV AV: Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconj. Chem. (1997) 8:649–657.
  • KATAYOSE S, KATAOKA K: Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J. Pharm. Sci. (1998) 87:160–163.
  • HARADA A, KATAOKA K: Novel polyioncomplex micelles entrapping enzyme molecules in the core. Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycofi-poly(aspartic acid) block copolymer in aqueous medium. Macromolecules (1998) 31:288–294.
  • LA SB, OKANO T, KATAOKA K: Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(-benzyl L-aspartat) block copolimer micelles. J. Pharm. Sci. (1996) 85:85–90.
  • JEONG YT, CHEON JB, KIM SH et al: Clonazepam release from core-shell type nanoparticles in vitro. J. Contr. Release (1998) 51:169–178.
  • ALLEN C, YU Y, MAYSINGER D, EISENBERG k Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818. Bioconj. Chem. (1998) 9:564–572.
  • TRUBETSKOY VS, GAZELLE GS, WOLF GL, TORCHILIN VP: Block copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of a long circulating particulate contrast medium for X-ray computed tomography. J. Drug Target (1997) 4:381–388.
  • •The first example of the iodine-carrying micelles serving as contrast agent for CT.
  • ALLEN C, EISENBERG A, MRSIC J, MAYSINGER D: PCL-b-PEO micelles as a delivery vehicle for FK506: assessment of a functional recovery of crushed peripheral nerve. Drug Deliv. (2000) 7(3):139–145.
  • TONCHEVA V, SCHACHT E, NG SY, BARR J, HELLER J: Use of block copolymers of poly(ortho esters) and poly (ethylene glycol) micellar carriers as potential tumour targeting systems. J. Drug Target. (2003) 11(6):345–353.
  • TANGY, LIU SY, ARMES SP, BILLINGHAM NC: Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Biomacromolecules (2003) 4(6):1636–1645.
  • UN WJ, JUANG LW, UN CC: Stability and release performance of a series of pegylated copolymeric micelles. Pharm. Res. (2003) 20(4):668–673.
  • CHEON SL, KIM C, CHAN IK, CHUNG H, YOUNG SJ: Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(epsilon-caprolactone) copolymer as a carrier for paclitaxel. J. Contr. Release (2003) 89(3):437–446.
  • KLIBANOV AL, MARUYAMA K, TORCHILIN VP, HUANG L: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. (1990) 268:235–238.
  • •The first paper on PEGylated long-circulating liposomes.
  • LUKYANOV AN, GAO Z, MAZZOLA L, TORCHILIN VP: Polyethylene glycol-diacyllipid micelles demonstrate increased accumulation in subcutaneous tumors in mice. Pharm. Res. (2002) 19:1424–1429.
  • GAO Z, LUKYANOV AN, SINGHAL A. TORCHILIN VP: Diacyl-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. (2002) 2:979–982.
  • LUKYANOV AN, HARTNER WC, TORCHILIN VP: Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J. Contr. Release. (2004) 94:187–193.
  • WANG J, MONGAYT DA, LUKYANOVAN, LEVCHENKO TS, TORCHILIN VP: Preparation and in vitro synergistic anticancer effect of vitamin K and 1,8-diazabicyclo [5,4,(]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int. J. Pharm. (2004) 272:129–135.
  • TORCHILIN VP, LUKYANOV AN, GAO Z, PAPAHADJOPOULOS-STERNBERG B: Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci: USA (2003) 100:6039–6044.
  • •The key paper on tumour-targeted polymeric immunomicelles.
  • KRISHNADAS A, RUBINSTEIN I, ONYUKSEL H: Sterically stabilised phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res. (2003) 20(2):297–302.
  • •An interesting paper on PEG-PE-based mixed micelles.
  • TORCHILIN VP, LEVCHENKO TS, WHITEMAN KR et al.: Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials (2001) 22:3035–3044.
  • LE GARREC D, TAILLEFER J, VAN LIER JE, LENAERTS V, LEROUX JC: Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J. Drug. Target. (2002) 10:429–437.
  • LUPPI B, ORIENTI I, BIGUCCI F et al.: Poly(vinylalcohol-co-vinyloleate) for the preparation of micelles enhancing retinyl palmitate transcutaneous permeation. Drug Deliv. (2002) 9(3):147–152.
  • NAM YS, KANG HS, PARK JY, PARK TG, HAN SH, CHANG IS: New micelle-like polymer aggregates made from PEI-PLGA diblock copolymers: micellar characteristics and cellular uptake. Biomateriais (2003) 24(12):2053–2059.
  • SANT VP, SMITH D, LEROUX JC: Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J. Contr. Release. (2004) 97(2):301–312.
  • •An interesting recent paper on pH-sensitive micelles for oral drug delivery.
  • JONES MC, RANGER M, LEROUX JC: pH-sensitive unimolecular polymeric micelles: synthesis of a novel drug carrier. Bioconj. Chem. (2003) 14(4):774–781.
  • VAN NORSTRUM CF, NARADOVIC D, BARENDS J, VAN STEENBERGEN MJ, HENNINK WE: Nanoparticles and hydrogels with transient stability from thermosensitive block copolymers. Proceedings of 30th CRS Meeting, UK (2003) 163.
  • NAGARAJAN R, GANESH K: Block copolymer self-assembly in selective solvents: theory of solubilization in spherical micelles. Macromolecules (1989) 22:4312–4325.
  • XING L, MATTICE WL: Large internal structures of micelles of triblock copolymers with small insoluble molecules in their cores. Langmuir (1998) 14:4074–4080.
  • ALLEN C, MAYSINGER D, EISENBERG A: Nano-engineering block copolymer aggregates for drug delivery. Coll. Surf B Biointof (1999) 16:1–35.
  • UN SY, KAWASHIMA Y: Pluronic surfactants affecting diazepam solubility, compatibility, and adsorption from i.v. admixture solutions. J. Parenter. Sci. TechnoL (1987) 41:83–87.
  • YOKOYAMA M, FUKUSHIMA S, UEHARA R et aL: Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J. Contr. Release. (1998) 50:79–92.
  • BATRAKOVA EV, DORODNYCH TX', KLINSKII EY et aL: Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Brit. J. Cancer (1996)74:1545–1552.
  • KABANOV AV, VINOGRADOV SV, SUZDALTSEVA UG, ALAKHOV VY: Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconj. Chem. (1995) 6:639–643.
  • •An interesting example of using micelles for oligo delivery.
  • ALAKHOV VYU, KABANOV AV: Blockcopolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin. Invest. Drugs (1998) 7:1453–1473.
  • MATSUMURAY, YOKOYAMA M, KATAOKA K et al.: Reduction of the side effects of an antitumor agent, KRN5500, by incorporation of the drug into polymeric micelles. Jpn. J. Cancer Res. (1999) 90:122–128.
  • YOKOYAMA M, MIYAUCHI M, YAMADA N et aL: Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. (1990) 50:1693–1700.
  • KWON GS, SUWA S, YOKOYAMA M, OKANO T, SAKURAI Y, KATAOKA K: Enhanced tumor accumulation and prolonged circulation times of micelles-forming poly(ethylene oxide-aspartate) block copolymers-adriamycin conjugates. J. Contr. Release. (1994) 29:17–23.
  • ALLEN C, HAN J, YU Y, MAYSINGER D, EISENBERG k Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J. Contr. Release. (2000) 63:275–286.
  • GREEN WALD RB, GILBERT CW, PENDRI A. CONOVER CD, XIA J, MARTINEZ A: Drug delivery systems: water soluble taxol 2'-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness./ Med. Chem. (1996) 39(2):424–431.
  • WEISSIG V, WHITEMAN KR, TORCHILIN VP: Accumulation of liposomal- and micellar-bound protein in solid tumor. Pharm. Res. (1998) 15:1552–1556.
  • •Rare example of tumour accumulation of micelle-incorporated protein.
  • YUAN F, DELLIAN M, FUKUMURA M et al.: Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res. (1995) 55:3752–3756.
  • •An important paper demonstrating the variability of vascular permeability (cut-off size) for different tumours.
  • HELMLINGER G, YUAN F, DELLIAN M, JAIN RK: Interstitial pH and p02 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. (1997) 3:177–182.
  • TANNOCK IF, ROTIN D: Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. (1989) 49:4373–4384.
  • KOHORI F, SAKAI K, AOYAGI T, YOKOYAMA M, SAKURAI Y, OKANO T: Preparation an characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide). J. Contr. Release (1998) 55:87–98.
  • •Early example of thermo-responsive micelles.
  • MEYER 0, PAPAHADJOPOULOS D, LEROUX JC: Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes. FEBS Lett. (1998) 41:61–64.
  • LE GARREC D, TAILLEFER J, VAN LIER JE, LENAERTS V, LEROUX JC: Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J. Drug Targ (2002) 10:429–437.
  • Y00 HS, LEE EA, PARK TG: Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J. Contr. Release. (2002) 82:17–27.
  • •Drug is released due to pH-mediated cleavage.
  • CHUNG JE, YOKOYAMA M, YAMATO M, AOYAGI T, SAKURAI Y, OKANO T: Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Contr. Release (1999) 62:115–127.
  • PRUITT JD, PITT WG: Sequestration and ultrasound-induced release of doxorubicin from stabilised Pluronic P105 micelles. Drug Deliv. (2002) 9(4):253–258.
  • •Deals with the application of ultrasound for micelle delivery and drug release.
  • RAPOPORT N, PITT WG, SUN H, NELSON JL: Drug delivery in polymeric micelles: from in vitro to in vivo. J. Contr. Release. (2003) 91:85–95.
  • •Deals with the application of ultrasound for micelle delivery and drug release.
  • RAPOPORT NY, CHRISTENSEN DA, FAIN HD, BARROWS L, GAO Z: Ultrasound-triggered drug targeting of tumors in vitro and in vivo. Ultrasonics (2004) 42(1-9):943–950.
  • •Deals with the application of ultrasound for micelle delivery and drug release.
  • SAVIC R, LUO L, EISENBERG A, MAYSINGER D: Miceliar nanocontainers distribute to defined cytoplasmic organelles. Science (2003) 300(5619):615–618.
  • NAGASAKI Y, YASUGI K, YAIVIAMOTO Y, HARADA A, KATAOKA K: Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules (2001) 2:1067–1070.
  • VINOGRADOV S, BATRAKOVA E, LI S, KABANOV A: Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconj. Chem. (1999) 10:851–860.
  • LEAMON CP, WEIGL D, HENDREN RW: Folate copolymer- mediated transfection of cultured cells. Bioconj. Chem. (1999) 10:947–957.
  • JULE E, NAGASAKI Y, KATAOKA K: Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconj. Chem. (2003) 14:177–186.
  • OGRIS M, BRUNNER S, SCHULLER S, KIRCHEIS R, WAGNER E: PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. (1999) 6:595–605.
  • LEAMON CP, LOW PS: Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov. Today (2001) 6:44–51.
  • LEE ES, NA K, BAEY: H. Polymeric micelle for tumor pH and folate-mediated targeting. J. Contr. Release (2003) 91:103–113.
  • •Recent example of folate-mediated micelle targeting.
  • CHEKHONIN VP, KABANOV AV, ZHIRKOVYA, MOROZOV GV: Fatty acid acylated Fab-fragments of antibodies to neurospecific proteins as carriers for neuroleptic targeted delivery in brain. FEBS Lett. (1991) 287:149–152.
  • TORCHILIN VP, LEVCHENKO TS, LUKYANOV AN et al.: p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta (2001) 1511: 97–411.
  • GAO Z, LUKYANOV AN, CHAKILAM AR, TORCHILIN VP: PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J. Drug Targ-. (2003) 11:87–92.
  • TORCHILIN VP: PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev. (2002) 54:235–251.
  • •Review on contrast micelles for imaging purposes.
  • SCHMEIDL UP, NELSON JA, TENG L, STARR F, MALEK R, HO RJ: Magnetic resonance imaging of the hepatobiliary system: intestinal absorption studies of manganese mesoporphyrin. Acad. Radiol. (1995) 2(11):994–1001.
  • GRANT CW, KARLIK S, FLORIO E: A liposomal MRI contrast agent: phosphatidylethanolamine-DTPA. Magn. Res. Med. (1989)11(2):236–243.
  • KABALKA G, BUONOCORE E, HUBNER K, DAVIS M, HUANG L: Gadolinium-labeled liposomes containing paramagnetic amphipathic agents: targeted MRI contrast agents for the liver. Magn. Res. Med. (1989) 8(1):89–95.
  • UNGER E, FRITZ T, WU G et al.: Liposomal MR contrast agents. J. Liposome Res. (1994) 4:811–834.
  • PARK YJ, LEE JY, CHANG YS et al.: Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Biomateriak (2002) 23(3):873–879.
  • MOGHIMI SM, HAWLEY AE, CHRISTY NM, GRAY T, DAVIS SS, ILLUM L: Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes. FEBS Lett. (1994) 344:25–30.
  • TRUBETSKOY VS, FRANK -KAMENETSKY MD, -WHITEMAN KR, WOLF GL, TORCHILIN VP: Stable polymeric micelles: lymphangiographic contrast media for y-scintigraphy and magnetic resonance imaging. Acad. Radia (1996) 3(3):232–238.
  • TRUBETSKOY VS, TORCHILIN VP: New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes./ Liposome Res. (1994) 4(2):961–980.
  • WOLF G: Targeted delivery of Imaging agents: an overview. In: Handbook of Targeted Delivery of ImagingAgents. VP Torchilin (Ed.) Boca Raton, CRC Press (1995):3–22.
  • KRAUSE G, LEIKE J, SACHSE A, SCHUHMANN-GIAMPIERI G: Characterization of iopromide liposomes. Invest. Radiol. (1993) 28:1028–1032.
  • LEANDER P: A new liposomal contrast medium for CT of the liver. An imaging study in a rabbit tumour model. Acta Radiol. (1996) 37(1):63–68.
  • TORCHILIN VP, FRANK -KAMENETSKY MD, WOLF GL: CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad. Radiol. (1999) 6(1):61–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.