89
Views
14
CrossRef citations to date
0
Altmetric
Review

Progress towards glucagon receptor antagonist therapy for Type 2 diabetes

&
Pages 1739-1749 | Published online: 28 Nov 2005

Bibliography

  • BURCLEIN R, KATZ EB, CHARRON MJ: Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism. Diabetes Metab. (1996) 22:373–396.
  • HUYPENS P, LING Z, PIPELEERS D, SCHUIT F: Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia (2000) 43(8):1012–1029.
  • GRAPENGIESSER E, DANSK H, HELLMAN B: Synchronization of pancreatic 0-cell rhythmicity after glucagon induction of Ca2* transients. Cell Calcium (2003) 34(1):49–53.
  • MA X, ZHANG Y, GROMADA J et al.: Glucagon stimulates exocytosis in mouse and rat pancreatic a-cells by binding to glucagon receptors. Mol. Endocrinol (2005) 19(1):198–212.
  • UNGER RH, ORCI L: Glucagon. In: Joslin's Diabetes Mellitus. Kahn CR, Weir GC (Eds), Williams 6c Wilkins, Baltimore, USA (1994):163–176.
  • REAVEN GM, CHEN YD, GOLAY A et aL: Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellims. J. CAn. Endocrinol Metab. (1987) 64(1):106–110.
  • BARON AD, SCHAEFFER L, SHRAG G, KOLTERMAN OG: Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in Type 2 diabetics. Diabetes (1987) 36(3):274–283.
  • •Describes the contribution of hyperglucagonaemia to increased rates of hepatic glucose production in Type 2 diabetics.
  • MATSUDA M, DEFRONZO RA, GLASS L et al: Glucagon dose-response curve for hepatic glucose production and glucose disposal in Type 2 diabetic patients and normal individuals. Metabolism (2002) 51(9):1111–1119.
  • KURUKULASURIYA RK, LINK JT, MADAR DJ et al: Prospects for pharmacologic inhibition of hepatic glucose production. Curr. Med. Chem. (2003) 10:99–121.
  • SHAH P, VELLA A, BASU A, BASU A et ed.: Impact of lack of suppression of glucagon on glucose tolerance in humans. Am. J. Physiol (1999) 8277(2, Pt.1):E283–E290.
  • SHAH P, VELLA A, BASU A et ell.: Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with Type 2 diabetes mellitus. J. Clin. Endocrinol Metab. (2000) 85(10:4053–4059.
  • •Describes how lack of postprandial suppression of glucagon induces hyperglycaemia in Type 2 diabetics.
  • DJURIC SW, GRIHALDE N, LIN CW: Glucagon receptor antagonists for the treatment of Type 2 diabetes: current prospects. Curr. Opin. Investig. Drugs (2002) 3(11): 1617–1623.
  • KURUKULASURIYA RK, LINK JT, MADAR DJ et al.: Potential drug targets and progress towards pharmacologic inhibition of hepatic glucose production. Curr. Med. Chem. (2003) 10:99–121.
  • LINK JT: Pharmacological regulation of hepatic glucose production. Curr. Opin. Investig Drugs (2003) 4(4):421–429.
  • LING AL, WASSERMAN JI: Approaches to glucagon receptor antagonists. Expert Opin. Ther. Patents (2003) 13(1):15–22.
  • SLOOP KW, DODSON MICHAEL M: Role of the glucagon receptor in glucose homeostasis: a therapeutic target to improve glycemic control in Type 2 diabetes. Drugs Fut. (2004) 29(8):835–841.
  • SLOOP KW, DODSON MM, MOYERS JS: Glucagon as a target for the treatment of Type 2 diabetes. Expert Opin. Ther. Targets (2005) 9(3):593–600.
  • ••Excellent recent review summarising theprogress on glucagon as a Type 2 diabetes target.
  • AMATRUDA JM, LIVINGSTON JN: The search for glucagon antagonists. In: The Handbook of Experimental Pharmacology. Lefebvre PJ (Ed.), Springer-Verlag, Berlin (1996):133–147.
  • PARKER JC, ANDREWS KM, ALLEN MR et al.: Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem. Biophys. Res. Comm. (2002) 290:839–843.
  • GELLING RW, DU XQ, DICHMANN DS et al.: Lower blood glucose, hyperglucagonemia, and pancreatic a cell hyperplasia in glucagon receptor knockout mice. Proc. Natl Acad. Sci. USA (2003) 100(3):1438–1443.
  • •Thorough characterisation and discussion of the relevance of glucagon receptor knockout mice.
  • JOHNSON DG, GOEBEL CU, HRUBY VJ, BREGMAN MD, TRIVEDI D: Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science (1982) 215(4536):1115–1116.
  • AHN JM, MEDEIROS M, TRIVEDI D, HRUBY VJ: Development of potent truncated glucagon antagonists. J. Med. Chem. (2001) 44(9):1372–1379.
  • AHN JM, MEDEIROS M, TRIVEDI D, HRUBY VJ; Development of potent glucagon antagonists: structure-activity relationship study of glycine at position 4. Pept . Res. (2001b) 58(2):151–158.
  • BRAND CL, ROLIN B, JORGENSEN PN et al.: Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia (1994) 37(10):985–993.
  • BRAND CL, JORGENSEN PN, SVENDSEN I, HOLST JJ: Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits. Diabetes (1996) 45(8):1076–1083.
  • BRAND CL, HANSEN B, GRONEMAN S, BOYSEN M, HOLST JJ: Sub-chronic glucagon neutralization improves diabetes in ob/ob mice. Diabetes (2000) 49\(Supp1.1):A81.
  • CHRISTOPHE J: Glucagon receptors: from genetic structure and expression to effector coupling and biological responses. Biochim. Biophs. Acta (1995) 1241:45–57.
  • JELINEK LG, LOK S, ROSENBERG GB et al.: Expression cloning and signaling properties of the rat glucagon receptor. Science (1993) 259:1614–1616.
  • SHIAO L-L, CASCIERI MA; TRUMBAUER M, CHEN H, SULLIVAN KA: Generation of mice expressing the human glucagon receptor with a direct replacement vector. Transgenic Res. (1999) 8:295–302.
  • •Describes the creation of mice expressing the human glucagon receptor that are an important drug discovery tool.
  • LADOUCEUR GH, COOK J, DOHERTY EM et al: Discovery of 5-hydroxyalky1-4-phenylpyridines as a new class of glucagon receptor antagonist. Bioorg-. Med. Chem. Lett. (2002) 12(3):461–464.
  • SMITH RA, HERTZOG DL, OSTERHOUT MH et al.: Optimization of the 4-aryl group of 4-aryl-pyridine glucagon antagonist: development of an efficient alternate synthesis. Bioorg-. Med. Chem. Lett. (2002) 12(9):1303–1306.
  • LADOUCEUR COOK JH, HERTZOG DL et al.: Integration of optimized substituent patterns to produce highly potent 4-aryl-pyridine glucagon receptor antagonist. Bioorg-. Med. Chem. Lett. (2002) 12(23):3421–3424.
  • PETERSEN KF, SULLIVAN JT: Effects of novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans. Diabetologia (2001) 44(11):2018–2024.
  • •Demonstrates acute antagonism of the glucagon receptor in humans.
  • KURUKULASURIYA R, SORENSEN BK, LINK JT et al.: Biaryl amide glucagon receptor antagonists. Bioorg-. Med. Chem. Lett. (2004) 14:2047–2050.
  • SHEN D-M, ZHANG F, BRADY EJ et al.: Discovery of novel, potent, and orally active spiro-urea human glucagon receptor antagonists. Bioorg-. Med. Chem. Lett. (2005) 15:4564–4569.
  • KURUKULASURIYA R, SORENSEN BK, LINK JT: Towards a potent small molecule glucagon receptor antagonist. 228th ACS Meeting. Philadelphia, USA (2004). MEDI–035.
  • DUFFY JL, KIRK BA, KONTEATIS Z et al.: Discovery of a novel class of thiophene-derived antagonists of the human glucagon receptor. 228th ACS Meeting. Philadelphia, USA (2004). MEDI 9.
  • QURESHI SA, CANDELORE MR, XIE D et al.: A novel glucagon receptor antagonist inhibits glucagon-mediated biological effects. Diabetes (2004) 53:3267–3273.
  • LING A, PLEWE M, GONZALEZ G et al.: Human glucagon receptor antagonists based on alkylidene hydrazides. Bioorg Med. Chem. Lett. (2002) 12:663–666.
  • MADSEN P, LING A, PLEWE M et al.: Optimization of alkylidene hydrazide based human glucagon receptor antagonist. Discovery of the highly potent and orally bioavailable 3-cyano-4-hydroxybenzoic acid 1 -(2,3,5,6,-tetramethylbenzy1)-1H-indole-4-ylmethylenelhydrazide. J. Med. Chem. (2002) 45(26):5755–5775.
  • HANDLON AL, AKWABI-AMEYAW A, BROWN K et al.: Glucagon receptor antagonist for the treatment of Type 2 diabetes. 226th ACS meeting. New York, USA (2003). MEDI164.
  • DE LASZLO SE, HACKER C, LI B: Potent, orally absorbed glucagon receptor antagonists. Bioorg-. Med. Chem. Lett. (1999) 9:641–646.
  • CHICHCHI GG, GRAZIANO MP, KOCH G et al.: Alterations in receptor activation and divalent cation activation of agonist binding by deletion of intracellular domains of the glucagon receptor. J. Biol. Chem. (1997) 272(12):7765–7769.
  • CHANG L, SIDLER K, CASCIERI M et al.: Substituted imdazoles as glucagon receptor antagonists. Bioorg-. Med. Chem. Lett. (2001) 11:2549–2553.
  • PARKER JC, McPHERSON K, ANDREWS KM et al.: Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes (2000) 49:207–2086.
  • NICOLAOU KC, PAPAGEORGIOU CD, PIPER JL et al.: The cytoskyrin cascade: a facile entry into cytoskyrin A, deoxyrubroskyrin, rugulin, skyrin, and flavoskyrin model systems. Angew. Chem. Int. Ed. (2005) 44:5846–5851.
  • DALLAS-YANG Q, QURESHI SA, XIE D et al.: Detection of glucagon-dependent GTPyS binding in high-throuput format. Anal. Biochem. (2002) 301:156–159.
  • HRUBY VJ: Designing peptide receptor agonist and antagonist. Nat. Rev. Drug. Disc. (2002) 1:847–858.
  • POTTERAT 0, WAGNER K, GEMMECKER G: BI32169, a bicyclic 19-peptide with strong glucagon receptor antagonist activity from Streptomyces sp. J. Nat. Prod. (2004) 67:1528–1531.
  • LIANG Y, OSBORNE MC, MONIA BP et al.: Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in dbldb mice. Diabetes (2004) 53:410–417.
  • SLOOP KW CAO JX-C, SIESKY AM et aL: Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. Clin . Invest. (2004) 113(11):1571–1581.
  • •A comprehensive chronic study of glucagon receptor antisense oligonudeotides in rodent models of diabetes that indicates the effects of inhibiting the glucagon receptor.
  • DALLAS-YANG Q, SHEN X, STROWSKI M et al.: Hepatic glucagon receptor binding and glucose lowering in vivo by peptidyl and non-peptidyl glucagon receptor antagonists. Eur. Pharm. (2004) 501(1-3):225–234.
  • KOLTERMAN OG, BUSE JB, FINEMAN MS et al.: Synthetic extendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with Type 2 diabetes./ Clin. EndocrinoL Metab. (2003) 88(7):3082–3089.
  • AHREN B, LANDIN-OLSSON M, JANSSON P-A et al.: Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in Type 2 diabetes./ Clin EndocrinoL Metab. (2004) 89(5):2078–2084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.