179
Views
22
CrossRef citations to date
0
Altmetric
Review

Pharmacological intervention with 5-lipoxygenase: new insights and novel compounds

&
Pages 505-519 | Published online: 10 May 2005

Bibliography

  • SAMUELSSON B: Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science (1983) 220:568–575.
  • RÄDMARK 0: Arachidonate 5-lipoxygenase. J. Lipid Mediat. Cell (1995) 12:171–184.
  • • This review covers the molecular biology of 5-lipoxygenase, particularly mutagenesis and structure—activity relationships.
  • HAMMARBERG T, KUPRIN S, RADMARK 0 et al.: Epr investigation of the active site of recombinant human 5-lipoxygenase: inhibition by selenide. Biochemistry (2001) 40:6371–6378.
  • CHASTEEN ND, GRADY JK, SKOREY KIet al.: Characterization of the non-heme iron center of human 5-lipoxygenase by electron paramagnetic resonance, fluorescence, and ultraviolet-visible spectroscopy: redox cycling between ferrous and ferric states. Biochemistry (1993) 32:9763–9771.
  • FALGUEYRET JP, DESMARAIS S, ROY PJ et al.: N-(4-chloropheny1)-N-hydroxy-N-(3-chlorophenyOurea, a general reducing agent for 5-, 12-, and 15-lipoxygenases and a substrate for their pseudoperoxidase activities. Biochem. Cell Biol. (1992) 70:228–236
  • SERI-IAN C: Lipoxins and aspirin-triggered 15-epi-lipoxins. In: Inflammation. Basic Principles and Clinical Correlates. Gallin JL, Syndermann R (Eds), Lipincott Williams & Williams, Philadelphia (1999).
  • • Summarises the biosynthesis and biology of lipoxins.
  • BRINK C, DAHLEN SE, DRAZEN J et al.: International Union of Pharmacology )(XXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol Rev. (2003) 55:195–227.
  • • A general overview about the properties and significance of the leukotriene and lipoxin receptors.
  • 0 FLAHERTY JT, TAYLOR JS, KUROKI M: The coupling of 5-oxo-eicosanoid receptors to heterotrimeric G proteins. J. Immunol (2000) 164:3345–3352.
  • CLAESSON HE, DAHLEN SE: Asthmaand leukotrienes: antileukotrienes as novel anti-asthmatic drugs. J. Intern. Med. (1999) 245:205–227.
  • • A key review about the biological effects of leukotrienes and clinical effects of antileukotrienes in the treatment of asthma.
  • MANCUSO P, NANA-SINKAM P, PETERS-GOLDEN M: Leukotriene B4 augments neutrophil phagocytosis of Klebsiella pneumoniae. Infect. Immun. (2001) 69:2011–2016.
  • MANCUSO P, STANDIFORD TJ, MARSHALL T et al.: 5-Lipoxygenase reaction products modulate alveolar macrophage phagocytosis of Klebsiella pneumoniae. Infect. Immun. (1998) 66:5140–5146.
  • NICOSIA S, CAPRA V, ROVATI GE: Leukotrienes as mediators of asthma. Pulm. Pharmacol Ther. (2001) 14:3–19.
  • • A detailed summary about the existence, distribution, signal transduction and pharmacological characterisation of leukotriene receptors.
  • DAHLEN SE, HEDQVIST P, HAIVIMARSTROM S et al.: Leukotrienes are potent constrictors of human bronchi. Nature (1980) 288:484–486
  • CHEN XS, SHELLER JR, JOHNSON EN et al.: Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature (1994) 372:179–182.
  • RADMARK 0: 5-lipoxygenase-derived leukotrienes: mediators also of atherosclerotic inflammation. Arterioscler. Thromb. Vase. Biol. (2003) 23:1140–1142.
  • • A critical commentary about the implication of 5-lipoxygenase and leukotrienes in atherosclerotic inflammation.
  • HELGADOTTIR A, MANOLESCU A, THORLEIFSSON G et al.: The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet. (2004) 36:233–239.
  • DWYER JH, ALLAYEE H, DWYER KM et al.: Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N EngL J. Med. (2004) 350:29–37.
  • ROMANO M, CLARIA J: Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB. (2003) 17:1986–1995.
  • BONEWALD LF, FLYNN M, QIA0 M et al.: Mice lacking 5-lipoxygenase have increased cortical bone thickness. Adv. Exp. Med. Biol. (1997) 433:299–302.
  • FUNK CD: The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. BBA Lipid Lipid Metab. (1996) 1304:65–84.
  • • This review focuses on mammalian lipoxygenase genes and summarises the biological consequences of lipoxygenase knock-out in mice.
  • SILVERMAN ES, DU J, DE SANCTIS GT et al.: Egr-1 and Spl interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants. Am. J. Respir. Cell. MoL Biol. (1998) 19:316–323.
  • STEINHILBER D, BRUNGS M, WERZ 0 et al.: The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J. Biol. Chem. (1995) 270:7037–7040.
  • STEINHILBER D: 5-Lipoxygenase: enzyme expression and regulation of activity. Pharm. Acta Helm (1994) 69:3–14.
  • • A key review for the understanding of the regulation of 5-lipoxygenase expression in haematopoetic cells.
  • JANSSEN-TIMMEN U, VICKERS PJ, WITTIG U et al.: Expression of 5-lipoxygenase in differentiating human skin keratinocytes. Proc. NatL Acad. Sci. USA (1995) 92:6966–6970.
  • SPANBROEK R, STARK HJ, JANSSEN-TIMMEN U et al.: 5-Lipoxygenase expression in Langerhans cells of normal human epidermis. Proc. Nail. Acad. Sci. USA (1998) 95:663–668.
  • LAMMERS C-H, SCHWEITZER P, FACCHINETTI P et al.: Arachidonate 5-lipoxygenase and its activating protein: prominent hippocampal expression and role in somatostatin signalling. J. Neurochem. (1996) 66:147–152.
  • BRUNGS M, RADMARK 0, SAMUELSSON B et al.: Sequential induction of 5-lipoxygenase gene expression and activity in Mono Mac 6 cells by transforming growth factor-13 and 1,25-dihydroxyvitamin D3. Proc. NatL Acad. Sci. USA (1995) 92:107–111.
  • STEINHILBER D, RADMARK 0, SAMUELSSON B: Transforming growth factor 13 upregulates 5-lipoxygenase activity during myeloid cell maturation. Proc. NatL Acad. Sci. USA (1993) 90:5984–5988.
  • UHL J, KLAN N, ROSE M et al.: The 5-lipoxygenase promoter is regulated by DNA methylation. j Biol. Chem. (2001) 12:12.
  • KLAN N, SEUTER S, SCHNUR N et al.: Trichostatin A and structurally related histone deacetylase inhibitors induce 5-lipoxygenase promoter activity. Biol. Chem. (2003) 384:777–785.
  • MANEV H, UZ T: DNA hypomethylating agents 5-aza-2.-deoxycytidine and valproate increase neuronal 5-lipoxygenase mRNA. Eur. j PharmacoL (2002) 445:149–50.
  • WERZ 0: 5-Lipoxygenase: cellular biology and molecular pharmacology. Curr. Drug Target Inflamm. Allergy (2002) 1:23–44.
  • • Provides a general overview about the regulation of 5-lipoxygenase and summarises the pharmacological tools for anti-leukotriene therapy.
  • MCINTYRE TM, REINHOLD SL, PRESCOTT SM et al.: Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B4 by human neutrophils. J. Biol. Chem. (1987) 262:15370–15376.
  • LILES WC, MEIER KE, HENDERSON WR: Phorbol myristate acetate and the calcium ionophore A23187 synergistically induce release of LTB4 by human neutrophils: involvement of protein kinase C activation in regulation of the 5-lipoxygenase pathway. J. ImmunoL (1987) 138:3396–3402.
  • POULIOT M, MCDONALD PP, KHAMZINA Let al.: Granulocyte-macrophage colony-stimulating factor enhances 5-lipoxygenase levels in human polymorphonuclear leukocytes. J. ImmunoL (1994) 152:851–858.
  • MCCOLL SR, KRUMP E, NACCACHE PH et al.: Granulocyte-macrophage colony-stimulating factor increases the synthesis of leukotriene B4 in human neutrophils in response to platelet-activating factor. J. ImmunoL (1991) 146:1204–1211.
  • WERZ 0, KLEMM J, SAMUELSSON B et al.: Phorbol ester up-regulates capacities for nuclear translocation and phosphorylation of 5-lipoxygenase in Mono Mac 6 cells and human polymorphonuclear leukocytes. Blood (2001) 97:2487–2495.
  • SURETTE ME, DALLAIRE N, JEAN N et al.: Mechanisms of the priming effect of lipopolysaccharides on the biosynthesis of leukotriene B4 in chemotactic peptide-stimulated human neutrophils. FASEB J. (1998) 12:1521–1531.
  • BINDU PH, SASTRY GM, SASTRY GN: Characterization of calcium and magnesium binding domains of human 5-lipoxygenase. Biochem. Biophys. Res. Commun. (2004) 320:461–467.
  • HEMAK J, GALE D, BROCK TG: Structural characterization of the catalytic domain of the human 5-lipoxygenase enzyme. J. MoL Model (2002) 8:102–112.
  • ROUZER CA, SAMUELSSON B: The importance of hydroperoxide activation for the detection and assay of mammalian 5-lipoxygenase. FEBS Lett. (1986) 204:293–296.
  • HATZELMANN A, SCHATZ M, ULLRICH V: Involvement of glutathione peroxidase activity in the stimulation of 5-lipoxygenase activity by glutathione-depleting agents in human polymorphonuclear leukocytes. Eur. Biochem. (1989) 180:527–533.
  • WEITZEL F, WENDEL A: Selenoenzymesregulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J. Biol. Chem. (1993) 268:6288–6292.
  • BUERKERT E, ARNOLD C, HAMMARBERG T et al.: The C2-like 0-barrel domain mediates the Ca2*-dependent resistance of 5-lipoxygenase activity against inhibition by glutathione peroxidase-1. 1 Biol. Chem. (2003) 278:42846–42853.
  • STRAIF D, WERZ 0, KELLNER R ell.:Glutathione peroxidase-1 but not 4 is involved in the regulation of cellular 5-lipoxygenase activity in monocytic cells. Biochem. j (2000) 349:455–461
  • AHARONY D, STEIN RL: Kinetic mechanism of guinea pig neutrophil 5-lipoxygenase. 1 Biol. Chem. (1986) 261:11512–11519.
  • ROUZER CA, SAMUELSSON B: Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase. Proc. Nail. Acad. Sci. USA (1987) 84:7393–7397.
  • NOGUCHI M, MIYANO M, MATSUMOTO T et al.: Human 5-lipoxygenase associates with phosphatidylcholine liposomes and modulates LTA4 synthetase activity. Biochim. Biophys. Acta (1994) 1215:300–306.
  • KULKARNI S, DAS S, FUNK CD et al.:A molecular basis of specific subcellular localization of the C2-like domain of 5-lipoxygenase. 1 Biol. Chem. (2002) 277:13167–13174.
  • OCHI K, YOSHIMOTO T, YAIVIAMOTO S et al.: Arachidonate 5-lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes. Activation by adenosine 5'-triphosphate. J. Biol. Chem. (1983) 258:5754–5758.
  • ROUZER CA, SAMUELSSON B: On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc. NatL Acad. Sci. USA (1985) 82:6040–6044.
  • ROUZER CA, SHIMIZU T, SAMUELSSON B: On the nature of the 5-lipoxygenase reaction in human leukocytes: Characterization of a membrane-associated stimulatory factor. Proc. NatL Acad. Sci. USA (1985) 82:7505–7509.
  • PROVOST P, SAMUELSSON B, RADMARK 0: Interaction of 5-lipoxygenase with cellular proteins. Proc. Natl. Acad. Sci. USA (1999) 96:1881–1885.
  • WERZ 0, KLEMM J, SAMUELSSON B et al.: 5-lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc. Nail. Acad. Sci. USA (2000) 97:5261–5266.
  • WERZ 0, BURKERT E, FISCHER L et al.: Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J. (2002) 16:1441–1443.
  • WERZ 0, SZELLAS D, STEINHILBER D, RADMARK 0: Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPKAP kinase-2.1 BioL Chem. (2002) 277:14793–14800.
  • WERZ 0, BURKERT E, SAMUELSSON B et al.: Activation of 5-lipoxygenase by cell stress is calcium independent in human polymorphonuclear leukocytes. Blood (2002) 99:1044–1052.
  • WERZ 0, KLEMM J, RADMARK 0, SAMUELSSON B: p38 MAP kinase mediates stress-induced leukotriene synthesis in a human B-lymphocyte cell line. J. Leuk. Biol. (2001) 70:830–838.
  • LEPLEY RA, MUSKARDIN DT, FITZPATRICK FA: Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase. 1 Biol. Chem. (1996) 271:6179–6184.
  • LUO M, JONES SM, PHARE SM et al.: Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523.1 Biol. Chem. (2004) 279:41512–41520.
  • UOZUMI N, KUME K, NAGASE T et al.: Role of cytosolic phospholipase A2 in allergic response and parturition. Nature (1997) 390:618–622.
  • FORD-HUTCHINSON AW, GRESSER M, YOUNG RN: 5-Lipoxygenase. Annu. Rev. Biochem. (1994) 63:383–417.
  • MCMILLAN RM, WALKER ERH: Designing therapeutically effective 5-lipoxygenase inhibitors. Trends PharmacoL Sci. (1992) 13:323–330.
  • TATESON JE, RANDALL RW, REYNOLDS CH et al.: Selective inhibition of arachidonate 5-lipoxygenase by novel acetohydroxamic acids: biochemical assessment in vitro and ex vivo. Br. J. PharmacoL (1988) 94:528–539
  • CARTER GW, YOUNG PR, ALBERT DH et al.: 5-Lipoxygenase inhibitory activity of zileuton. J. PharmacoL Exp. Ther. (1991) 256:929–937.
  • BELL RL, LANNI C, MALO PE et al.: Preclinical and clinical activity of zileuton and A-78773. Ann. NY Acad. Sci. (1993) 696:205–215.
  • DRAZEN JM: Asthma therapy with agentspreventing leukotriene synthesis or action. Proc. Assoc. Am. Physicians (1999) 111:547–559.
  • WEINBLATT ME, KREMER JM, COBLYN JS et al.: Zileuton, a 5-lipoxygenase inhibitor in rheumatoid arthritis. J. RheumatoL (1992) 19:1537–1541.
  • BROOKS CDW, STEWART AO, BASHA A et al.: R-(+)-N4345-(4-Fluorophenyl)methyll-2-thienyll -1-methyl-2-propynyll -N-hydroxyurea (ABT-761), a second generation 5-lipoxygenase inhibitor. J. Med. Chem. (1995) 38:4768–4775.
  • LEHNIGK B, RABE KF, DENT G et al.:Effects of a 5-lipoxygenase inhibitor, ABT-761, on exercise-induced bronchoconstriction and urinary LTE4 in asthmatic patients. Eur. Respir. J. (1998) 11:617–623.
  • BIRD, BRUNEAU P, CRAWLEY GC et al.: (Methoxyalkypthiazoles: a new series of potent, selective, and orally active 5-lipoxygenase inhibitors displaying high enantioselectivity. J. Med. Chem. (1991) 34:2176–2186.
  • CRAWLEY GC, DOWELL RI, EDWARDS PN et al.: Methoxytetrahydropyrans. A new series of selective and orally potent 5-lipoxygenase inhibitors. 1 Med. Chem. (1992) 35:2600–2609.
  • DUCHARME Y, BRIDEAU C, DUBE D et al.: Naphthalenic lignan lactones as selective, nonredox 5-lipoxygenase inhibitors. Synthesis and biological activity of (methoxyalkypthiazole and methoxytetrahydropyran hybrids. J. Med. Chem. (1994) 37:512–518.
  • HAMEL P, RIENDEAU D, BRIDEAU C et al.: Substituted (pyridylmethoxy)naphthalenes as potent and orally active 5-lipoxygenase inhibitors; synthesis, biological profile, and pharmacokinetics of L-739,010.1 Med. Chem. (1997) 40:2866–2875.
  • WERZ 0, SZELLAS D, HENSELER M et al.: Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity. MoL PharmacoL (1998) 54:445–451.
  • FISCHER L, SZELLAS D, RADMARK 0 et al.: Phosphorylation- and stimulus-dependent inhibition of cellular 5-lipoxygenase activity by nonredox-type inhibitors. FASEB J. (2003) 17:949–951.
  • LAUFER S, TRIES S, AUGUSTIN J et al.: Pharmacological profile of a new pyrrolizine derivative inhibiting the enzymes cyclo-oxygenase and 5-lipoxygenase. Arzneimittelfirsch (1994) 44:629–636.
  • SAFAYHI H, MACK T, SABIERAJ J et al.: Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J. PharmacoL Exp. Ther. (1992) 261:1143–1146
  • ALBERT D, ZUNDORF I, DINGERMANN T et al.: Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem. PharmacoL (2002) 64:1767–75.
  • MANO T, STEVENS RW, ANDO K et al.:Novel imidazole compounds as a new series of potent, orally active inhibitors of 5-lipoxygenase. Bioorg-. Med. Chem. (2003) 11:3879–3887.
  • MANO T, OKUMURA Y, SAKAKIBARA M et al.: 445-Fluoro-344-(2-methyl-1H-imiciazol-1-yl)benzyloxylphenyll-3,4,5,6-tetrahydro-2H-pyran-4-carboxamide, an orally active inhibitor of 5-lipoxygenase with improved pharmacokinetic and toxicology characteristics. J. Med. Chem. (2004) 47:720–725.
  • FISCHER L, STEINHILBER D, WERZ 0: Molecular pharmacological profile of the nonredox-type 5-lipoxygenase inhibitor CJ-13,610. Br. J. PharmacoL (2004) 142:861–868.
  • HWANG SB: Specific receptors of platelet-activating factor, receptor heterogeneity, and signal transduction mechanisms. J. Lipid Mediat. (1990) 2:123–158.
  • CAI X, SCANNELL RT, YAEGER D et al.: (+1-)-Trans-2-[3-methoxy-4-(4-chlorophenylthioethoxy)-5-(N-methyl-N-hydroxyureidypmethylphenyll-5-(3,4, 5-trimethoxyphenyptetrahydrofuran (CMI-392), a potent dual 5-lipoxygenase inhibitor and platelet-activating factor receptor antagonist. J. Med. Chem. (1998) 41:1970–1979.
  • QIAN C, HWANG SB, LIBERTINE-GARAHAN Let al.: Anti-inflammatory activities of LDP-392, a dual PAF receptor antagonist and 5-lipoxygenase inhibitor. PharmacoL Res. (2001) 44:213–220.
  • GARCEAU D, FORD-HUTCHINSON AW, CHARLESON S: 5-Lipoxygenase inhibitors and allergic conjunctivitis reactions in the guinea-pig. Eur. J. PharmacoL (1987) 143:1–7.
  • ROQUET A, DAHLEN B, KUMLIN M et al.: Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am. J. Respir. Crit. Care Med. (1997) 155:1856–1863.
  • WILSON AM, ORR LC, SIMS EJ et al.: Antiasthmatic effects of mediator blockade versus topical corticosteroids in allergic rhinitis and asthma. Am. J. Respir. Crit. Care Med. (2000) 162:1297–301
  • ISHII K, YAKUO I, SETO Yet al.: Antiallergic activity and mode of action of N- [4- [4-(diphenylmethyl)-1-piperazinyl]buty11-3-(6-methy1-3-pyridyDacrylamide in experimental animals. Arzneimittelforschung (1993) 43:148–154.
  • SHIZAWA T, MAEDA K, ABE K et al.: Effects of TMK688, a novel anti-allergic drug, on allergic nasal obstruction and exudative responses in sensitized guinea pigs. Naunyn Schmiedebergs Arch. PharmacoL (1997) 356:815–819.
  • LEWIS TA, BAYLESS L, ECKMAN JB et al.: 5-lipoxygenase inhibitors with histamine H1 receptor antagonist activity. Bioorg-. Med. Chem. Lett. (2004) 14:2265–2268
  • LEWIS TA, BAYLESS L, DIPESAAJ et al.: 5-Lipoxygenase inhibition by N-hydroxycarbamates in dual-function compounds. Bioorg-. Med. Chem. Lett. (2005) 15:1083–1085.
  • GIANNARAS A, SELIG W, ELLIS J et al.: The effect of a novel, dual function histamine H1 receptor antagonist/ 5-lipoxygenase enzyme inhibitor on in vivo dermal inflammation and extravasation. Eur. J. PharmacoL (2005) 506:265–271.
  • ZOUBOULIS CH C, SABOROWSKI A, BOSCHNAKOW A: Zileuton, an oral 5-lipoxygenase inhibitor, directly reduces sebum production. Dermatology (2005) 210:36–38.
  • ZOUBOULIS CC, NESTORIS S, ADLER YD et al.: A new concept for acne therapy: a pilot study with zileuton, an oral 5-lipoxygenase inhibitor. Arch. DermatoL (2003) 139:668–670.
  • WHITNEY LW, LUDWIN SK, MCFARLAND HF et al.: Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. NeuroimmunoL (2001) 121:40–48.
  • NEU I, MALLINGER J, WILDFEUER A et al.: Leukotrienes in the cerebrospinal fluid of multiple sclerosis patients. Acta NeuroL Scand. (1992) 86:586–587.
  • HAYNES J JR, BALIGA BS, OBIAKO B et al.: Zileuton induces hemoglobin F synthesis in erythroid progenitors: role of the L-arginine-nitric oxide signaling pathway. Blood (2004) 103:3945–3950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.