235
Views
10
CrossRef citations to date
0
Altmetric
Review

Monoclonal antibody–drug conjugates

Pages 1087-1103 | Published online: 02 Dec 2005

Bibliography

  • ROSS JS, GRAY K, SCHENKEIN D:Antibody-based therapeutics in oncology. Expert Rev. Anticancer Ther. (2003) 3:107–121.
  • •Covers antibody therapeutics in clinical trials and contains an extensive table.
  • MEYER DL, SENTER PD: Recent advances in antibody drug conjugates for cancer therapy. Annu. Rep. Med. Chem. (2003) 38:229–236.
  • •Orientated towards chemoimmunoconjugate and organised by linker type.
  • MILENIC DE: Monoclonal antibody- based therapy strategies: providing options for the cancer patient. Curr. Pharm. Rev. (2002) 8:1749–1764.
  • •Comprehensive review of all antibody uses in oncology.
  • GARNETT MC: Targeted drug conjugates: principles and progress. Adv. Drug Deliv. Rev. (2001) 171–216.
  • ••Although not as recent, a verycomprehensive review of chemoimmunoconjugates.
  • APPELGREN LD, BAILEY DL, BRIGGS SL et al.: Chemoimmunoconjugate development for ovarian carcinoma therapy: preclinical studies with vinca alkaloid-monoclonal antibody constructs. Bioconjug Chem. (1993) 4:121–126.
  • IWAHASHI T, TONE Y: USUI J et al.: Selective killing of carcinoembryonic-antigen (CEA)-producing cells in vitro by the immunoconjugate cytorhodin-S and CEA-reactive cytorhodin-S antibody CA208. Cancer Immunol Immunother. (1989) 30:239–46.
  • HERMENTIN P, DOENGES R, GRONSKI P et al.: Attachment of rhodosaminylanthracyclinone-type anthracyclines to the hinge-region of monoclonal antibodies. Bioconjug. Chem. (1990) 1:100–107.
  • TRAIL PA, WILLNER D, LASCH SJ et al.: Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science (1993) 261:212–215.
  • •Seminal paper on BR96-DOX conjugate.
  • SMITH S: Technology evaluation: SGN-15, Seattle Genetics, Inc. Cuff. Opin. Mol. Ther. (2001) 3:295–302.
  • SALEH MN SUGARMAN S, MURRAY J et al: Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with Lewis Y-expressing epithelial tumors. J. Clin. Oncol (2000) 18:2282–2292.
  • TOLCHER AW, SUGARMAN S, GELMAN KA et al.: Randomized Phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol (1999) 17:478–484.
  • TRAIL PA, WILLNER D, BIANCHI AB et al.: Enhanced antitumor activity of paclitaxel in combination with the anticarcinoma immunoconjugate BR96-doxorubicin. Clin. Cancer Res. (1999) 5:3632–3638.
  • MUELLER BM, REISFELD RA, SILVEIRA MH, DUNCAN JD, WRASIDLO WA: Pre-clinical therapy of human melanoma with morpholino-doxorubicin conjugated to a monoclonal antibody directed against an integrin on melanoma cells. Antibody Immunoconjug-. Radiopharm. (1991) 4:99–106.
  • KING HD, STAAB AJ, PHAM-KAPLITA K et al.: BR96 conjugates of highly potent anthracyclines. Bioorg-. Med. Chem. Lett. (2003) 13:2119–2122.
  • OJIMA I, GENG X, WU X et ell.: Tumor-specific novel taxoid-monoclonal antibody conjugates. J. Med. Chem. (2002) 45:5620–5623.
  • MILLER LM, ROLLER E, WU X et aL: Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies. Bioorg. Med. Chem. Lett. (2004) 14:4079–4082.
  • MILLER LM, ROLLER EE, ZHAO RY et al.: Synthesis of taxoids with improved cytotoxicity and solubility for use in tumor-specific delivery./ Med. Chem. (2004) 47:4802–4805.
  • CHART RVJ, MARTELL BA, GROSS JL et al.: Immunoconjugates containing novel maytansinoids: Promising anticancer drugs. Cancer Res. (1992) 52:127–131.
  • LIU C, CT-TART RVJ: The development ofantibody delivery systems to target cancer with highly potent maytansinoids. Expert Opin. Investig. Drugs (1997) 6:169–172.
  • LIU C, TADAYONI BM, BOURRET LA et al.: Eradication of large colon tumor xenografts by targeted delivery of maytansinoids Proc. Natl Acad. Sci. USA (1996) 93:8618–8623.
  • HELFT PR, SCHILSKY RL, HOKE FJ et al.: A Phase I study of cantuzumab mertansine administered as a single intravenous infusion once weekly in patients with advanced solid tumors. Clin. Cancer Res. (2004) 10:4363–4368.
  • SMITH SV: Technology evaluation: cantuzumab mertansine, Immunogen. Curr. Opin. MoL Ther. (2004) 6:666–674.
  • •Good overall review of cantuzumab mertansine.
  • LIEBISCH P: EPPINGER S, SCHOPFLIN C: CD44v4, a target for novel antibody treatment approaches is frequently expressed in multiple myeloma and associated with deletion of chromosome arm 13q. Haematologica (2005) 90:489–493.
  • TASSONE P, GOZZINI A, GOLDMACHER Vet al.: In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2'-deacetyl-N2-(3-mercapto-1-oxopropy1)-maytansine against CD56* multiple myeloma cells. Cancer Res. (2004) 64:4629–4636.
  • HENRY MD, WEN S, SILVA MD, CHANDRA S, MILTON M, WORLAND PJ: A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res. (2004) 64:7995–8001.
  • WILHELM SD, WIDISON WC, WHITEMAN KR et al.: Tumor-specific delivery of novel maytansinoids: Synthesis and biological evaluation. 229th ACS National Meeting, San Diego, CA (2005) MEDI–442.
  • •Improved maytansine conjugates. Need to wait for full publication.
  • BOGER DL, YUN W: CBI-TMI: synthesis and evaluation of a key analog of the duocarmycins. Validation of a direct relationship between chemical solvolytic stability and cytotoxic potency and confirmation of the structural features responsible for the distinguishing behavior of enantiomeric pairs of agents. J. Am. Chem. Soc. (1994) 116:7996–8006.
  • CHART RVJ, JACKEL KA, BOURRET LA et al.: Enhancement of the selectivity and antitumor efficacy of a CC-1065 analog through immunoconjugate formation. Cancer Res. (1995) 55:4079–4084.
  • ZHAO RY, CHART R, CAVANAGH E et al.: New water soluble CC-1065 analog prodrugs: design, synthesis and evaluation. 224th ACS National Meeting, Boston, MA (2002) MEDI–147.
  • SUZAWA T, NAGAMURA S, SAITO H, OHTA S, HANAI N, YAMASAKI M: Synthesis of a novel duocarmycin derivative DU-257 and its application to immunoconjugate using poly(ethylene glycol)-dipeptidyl linker capable of tumor specific activation. Bioorg-. Med. Chem. (2000) 8:2175–2184.
  • JEFFREY SC, TORGOV MY, ANDREYKA JB et al.: Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J. Med. Chem. (2005) 48:1344–1358.
  • CORTAZZO M, SCHOR NF: Potentiation of enediyne-induced apoptosis and differentiation by Bc1-2. Cancer Res. (1996) 56:1199.
  • CHAN SY, GORDON AY, COLEMAN RY et al.: A Phase II study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother. (2003) 52:243–248.
  • HAMANN PR, HINMAN LM, BEYER CF et al.: An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors, choice of linker and overcoming drug resistance. Bioconjug-. Chem. (2005) 16:346–353.
  • ••Demonstrates that the best linker may notbe universal but depends on target antigen/cell type.
  • HAMANN PR, HINMAN LM, BEYER CF: A calicheamicin conjugate with a fully humanized anti-MUC1 antibody shows potent antitumor effects in breast and ovarian tumor xenografts. Bioconjug Chem.16:354–360 (2005).
  • BROSS PR, BEITZ J, CHEN G et al.: Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. (2001) 7:1490–1496.
  • •See also 1731•
  • DEANGELO DJ, LIU D, STONE R: Preliminary report of a Phase II study of gemtuzumab ozogamicin in combination with cytarabine and daunorubicin in patients 60 years of age with de novo acute myeloid leukemia. Proc. Am. Soc. Clin. Oncol (2003) 22:a2325.
  • •Meeting abstract on one of the continuing studies with this conjugate, which indicates an 84% CR rate.
  • HAMANN PR, HINMAN LM, BEYER CF et al.: An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug. Chem. (2002) 13:40–46.
  • HAMANN PR, HINMAN LM, HOLLANDER I et al, Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. (2002) 13:47–58.
  • ••Describes predinical characterisation ofMylotarg and how the linker was designed.
  • DIJOSEPH JF, ARMELLINO DC, BOGHAERT ER et al.: Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood (2004) 103: 1807-1814.
  • BOGHAERT ER, SRIDHARAN L, ARMELLINO DC et al, Antibody-targeted chemotherapy with the calicheamicin conjugate hu3S193-N-acetyl gamma calicheamicin dimethyl hydrazide targets Lewis" and eliminates Lewis-positive-positive human carcinoma cells and xenografts. Clin. Cancer Res. (2004) 10:4538–4549.
  • LODE HN, REISFELD RA, HANDGRETINGER R, NICOLAOU KC, GAEDICKE G, WRASIDLO W: Targeted therapy with a novel enediyne antibiotic calicheamicin effectively suppresses growth and dissemination of liver metastases in a syngeneic model of murine neuroblastoma. Cancer Res. (1998) 58:2925–2928.
  • NICOLAOU KC: The battle for calicheamicin ylI. Angelo. Chem., Int. Ed. Engl. (1993) 32:1377–85.
  • BURCHARDT CA, UTTENREUTHER FMM, FISCHER P, GAEDICKE G, WRASIDLO W: Cytotoxic effects of new immunoconjugates in different neuroblastoma cell-lines. J. Cancer Res. Clin. Oncol (1998) 124:137.
  • BERNT KM, LODE HN, HAGEMEIER C, GAEDICKE G, WRASIDLO W: CD19 targeted calicheamicin theta is effective against high risk ALL. Blood (2000) 96:467a.
  • KNOLL K, WRASIDLO W, SCHERBERICH JE, GAEDICKE G, FISCHER P: Targeted therapy of experimental renal cell carcinoma with a novel conjugate of monoclonal antibody 138H11 and calicheamicin 0%. Cancer Res. (2000) 60:6089–6094.
  • SCHMIDT CS, WRASIDLO W, SCHERBERICH JE, GAEDICKE G, FISCHER P: Chemoimmunoconjugates with the monoclonal antibody 138H11 for targeting the cytotoxic prodrug calicheamicin 0 to renal cell carcinomas. Tumor Target. (1999) 4:271–277.
  • OTSUJI E, YAMAGUCHI T, TSURUTA H et al.: The effect of intravenous and intra-tumoral chemotherapy using a monoclonal antibody-drug conjugate in a xenograft model of pancreatic cancer. Eur. j Surg Oncol (1995) 21:61–65.
  • OKAMOTO K, YAMAGUCHI T, OTISUJI E et al.: Targeted chemotherapy in mice with peritoneally disseminated gastric cancer using monoclonal antibody-drug conjugate. Cancer Lett. (1998) 122:231–236.
  • MAIBUCHER A. SCHONLAU F, GOTTSCHALK U, KOHNLEIN W, GARNETT: Neocarzinostatin immunoconjugates: In vitro evaluation of therapeutic potential. Pharm. Sci. Commun. (1994) 4:253–261.
  • TAKAHASHI T, YAMAGUCHI T, KITAMURA K et al.: Clinical application of monoclonal antibody-drug conjugates for immunotargeting chemotherapy of colorectal carcinoma. Cancer (1988) 61:881–888.
  • DORONINA S, MENDELSOHN B, TOKI B et al.: Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol (2003) 21:778–784.
  • LAW C-L, CERVENY CG, GORDON KA et al.: Efficient elimination of B-lineage lymphomas by anti-CD20 auristatin conjugates. Clin. Cancer Res. (2004) 10:7842–7851.
  • FRANCISCO JA, CERVENY CG, MAYER DL et al.: cAC10-veMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood (2003) 102:1458–1465.
  • SANDERSON RJ, HERING MA, JAMES SF et al.: In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res. 11:843–852.
  • ARAF DEH, BHASKAR V, IBSEN E et al.:Preclinical validation of antiTMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol Cancer Ther. (2004) 3:921–931.
  • MAO W, LUIS E, ROSS S et al.: EphB2 asa therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res. (2004) 64:781–788.
  • DORONINA SE, TOKI BE, TORGOV MY et al.: Immunoconjugates comprised of drugs with impaired cellular permeability: A new approach to targeted therapy. 228th ACS National Meeting, Philadelphia, PA (2004) MEDI–010.
  • •An interesting approach. Need to wait for full publication.
  • WALKER Mk DUBOWCHIK GM, HOFSTEAD SJ, TRAIL PA, FIRESTONE RA: Synthesis of an immunoconjugate of camptothecin. Bioorg Med. Chem. Let. (2002) 12:217–219.
  • MANDLER R, KOBAYASHI H, HINSON ER, BRECHBEIL MW, WALDMAN TA: Herceptin-geldanamycin immunoconjugates: pharmacokinetics, biodistribution, and enhanced antitumor activity. Cancer Res. (2004) 64:1460–1467.
  • HAMANN PR, HINMAN LM, HOLLANDER I et al.: A potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. (2002) 13:7–58.
  • ABOUD-PIRAK E, SERGENT T, OTTE-SLACHMUYLDER C, ABARCA J, TROUET A, SCHNERIDER YJ et al.: Binding and endocytosis of a monoclonal antibody to a high molecular weight human milk fat globule membrane-associated antigen by cultured MCF-7 breast carcinoma cells. Cancer Res. (1988) 48:3188–3196.
  • DUBOWCHIK GM, FIRESTONE RA, PADILLA L et al.: Cathepsin B-labile linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: Model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. (2002) 13:855–869.
  • TOKI BE, CERVENY CG, WAHL AF, SENTER PD: Protease-mediated fragmentation ofp-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. J. Org. Chem. (2002) 67:1866–1872.
  • SUZAWA T, NAGAMURA S, SAITO H: Enhanced tumor cell selectivity of adriamycin-monoclonal antibody conjugates via a poly(ethyleneglycofi-based cleavable linker. J. Control Release (2002) 79:229-249. 1101 Expert Opin. Ther Patents (2005) 15(9)
  • HAMBLETT KJ, SENTER PD, CHACE DF et al.: Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. (2004) 10:7063–7070.
  • ••Shows some of the considerations thatneed to be addressed with the degree of drug loading.
  • DUBOWCHIK GM, FIRESTONE RA, PADILLA L: Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug Chem. (2002) 13:855–869.
  • •Describes the work behind the auristatin peptide linkers.
  • BALOGLU E, MILLER ML, ROLLER EE et al.: Synthesis and biological evaluation of novel taxoids designed for targeted delivery to tumors. Bioorg. Med. Chem. Lett. (2004) 14:5885–5888.
  • HINMAN LM, HAMANN R, Cancer Res. (1993) 53:3336–3342.
  • MATSUI H, TAKESHITA A, NAITO K. et al.: Reduced effect of gemtuzumab Differential response of human acute myeloid leukemia cells to gemtuzumab ozogamicin in vitro: Role of Chkl and Chk2 phosphorylation and caspase 3. Blood (2003) 101:4589–4597.
  • SAVARAJ N, WU CJ, LAMPIDIS TJ, TAPIERO H, CHUA L, FEUN LG: Clin. Cancer Res. (2002) 8:300.
  • •See also [36].

Websites

  • http://www.seattlegenetics.com/about/ alliances.htm Seattle Genetics.
  • http://www.medarex.com/cgi-local/item.p1/ 20020523–555512 Medarex, press release archive.
  • http://www.seattlegenetics.com/news/ index.htm Seattle Genetics, press release (7/6/2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.