59
Views
1
CrossRef citations to date
0
Altmetric
Review

Potassium channel blockers as immunosuppressants

Pages 1209-1220 | Published online: 02 Dec 2005

Bibliography

  • GOLDHILL J, HIGGS G: Rheumatoid arthritis: emerging drug discovery targets and therapeutic candidates. A Lead Discovery Report. (October 2003). See (201).
  • WICKENDEN AD: K* channels as therapeutic drug targets. Pharmacol Therap. (2002) 94:157–182.
  • COGHLAN MJ, CARROLL WA, GOPALAKRISHNAN M: Recent developments in the biology and medicinal chemistry of potassium channel modulators: update from a decade of progress. J. Med. Chem. (2001) 44:1627–1653.
  • CHANDY KG, CAHALAN M, PENNINGTON M et al.: Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon (2001) 39:1269–1276.
  • CHANDY KG, WULFF H, BEETON C et al.: K* channels as targets for specific immunomodulation. Trends PharmacoL Sci. (2004) 25:280–289.
  • WULFF H, BEETON C, CHANDY KG: Potassium channels as therapeutic targets for autoimmune disorders. Cuff. Opin. Drug Discov. Dev. (2003) 6:640–647.
  • DECOURSEY TE, CHANDY KG, GUPTA SC et al.: Voltage-gated IQ channels in human T lymphocytes: a role in mitogenesis? Nature (1984) 307:465–468.
  • MATTESON DR, DEUTSCH C: K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature (1984) 307:468–471.
  • CAHALAN MD, CHANDY KG, DECOURSEY TE et al.: A voltage-gated potassium channel in human T lymphocytes. J. Physiol. (1985) 358:197–237.
  • SCHLICHTER L, SIDELL N, HAGIWARA S: IQ- channels are expressed early in human T-cell development. Proc. Natl Acad. Sci. USA (1986) 83:5625–5629.
  • WULFF H, CALABRESI P, ALLIE R et al.: The voltage-gated Kv1.3 IQ- channel in effector memory T cells as new target for MS. J. Clin. Invest. (2003) 111:1703–1713.
  • WULFF H, KNAUS H, PENNINGTON M et al :IQ channel expression during B cell differentiation: implications for immunodulation and autoimmunity. J. Immunol (2004) 173:776–786.
  • SALLUSTO F, LENIG D, FORSTER R et al.: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature (1999) 401:708–712.
  • RUS H, PARDO CA, HU L et al.: The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc. Natl Acad. Sci. USA (25 July 2005) 10.1073/pnas.0501770102 (online).
  • CORCIONE A, CASAZZA S, FERRITTI E et al. : Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Nail Acad. Sci. USA (2004) 101:11064–11069.
  • BEETON C, WULFF H, BARBARIA J et al.: Selective blockade of T lymphocyte IQ- channels amelioriates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc. Natl Acad. Sci. USA (2001) 98:13942–13947.
  • BEETON C, PENNINGTON MW, WULFF H et al.: Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. MoL PharmacoL (2005) 67:1369–1381.
  • BAO J, MIAO S, KAYSER F et al: Potent Kv1.3 inhibitors from correolide - modification of the C18 position. Bioorg. Med. Chem. Lett. (2005) 15:447–451.
  • MIAO M, BAO J, GARCIA ML et al.: Benzamide derivatives as blockers of the Kv1.3 ion channel. Bioorg. Med. Chem. Lett. (2003) 13:1161–1164.
  • SCHMALHOFER WA, BAO J, MCMANUS OB et al.: Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties. Biochem. (2002) 41:7781–7794.
  • SCHMALHOFER WA, SLAUGHTER RS, MATYSKIELA M et al.: Di-substituted cyclohexyl derivatives bind to two identical sites with postive cooperativity on the voltage-gated potassium channel, Kv1.3. Biochem. (2003) 42:4733–4743.
  • BAELL JB, GABLE RW, HARVEY AJ et al.: Khellinone derivatives as blockers of the voltage-gated potassium channel Kv1.3: synthesis and immunosuppressive activity. J. Med. Chem. (2004) 47:2326–2336.
  • VENNEKAMP J, WULFF H, BEETON C et al: Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. MoL PharmacoL (2004) 65:1364–1374.
  • SANKARANARAYANAN A, SCHMITZ A, SCHMIDT-LASSEN K et al.: Design of a selective small molecule Kv1.3 blocker. 229th ACS Meeting. San Diego, USA (2005). MEDI107.
  • HAHLBROCK K, ZILG H, GRISEBACH H: Stereochemistry of the enzymatic cyclisation of 4,2',4'-trihydroxychalcone to 7,4'-dihydroxyflavanone by isomerases from mung bean seedlings. Eur. j Biochem. (1970) 15:13–18.
  • JEZ J, BOWMAN ME, DIXON RA et al.: Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. (2000) 7:786–791.
  • CHEN MX, GORMAN SA, BENSON B et al.: Small and intermediate conductance Ca2*- activated IQ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch. Pharmacol (2004) 369:602–615
  • BOETTGER MK, TILLS, CHEN MX et al.: Calcium-activated potassium channel SK1- and IK1- like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain (2002) 125:252–263
  • FURNESS JB, ROBBINS HL, SELMER I-Set al. : Expression of intermediate conductance potassium channel immunoreactivity in neurons and epithelial cells of the rat gastrointestinal tract. Cell Tissue Res. (2003) 314:179–189
  • JOINER WJ, BASAVAPPA S, VIDYASAGAR S et al.: Active K* secretion occurs through multiple types of KCa channels and is regulated by IKCa channels in rat proximal colon. Am. J. PhysioL (2003) 285:G185–G196
  • URBAHNS K, HORVATH E, STASCH J-P et al.: 4-Phenyl-4H-pyrans as IKCa channel blockers. Bioorg Med. Chem. Lett. (2003) 13:2637–2639.
  • URBAHNS K, GOLDMANN S, KRUEGER Jet al.: IKCa-channel blockers. Part 2: Discovery of cyclohexadienes. Bioorg. Med. Chem. Lett. (2005) 15:401–404.
  • WERMUTH CG: Selective optimization of side activities: another way for drug discovery. J. Med. Chem. (2004) 47:1303–1314.
  • WULFF H, MILLER MJ, HAENSEL W et al.: Design of a potent and selective inhibitor of the intermediate-conductance Ca2*-activated IQ channel, KCa3.1: a potential immunosuppressant. Proc. Nail. Acad. Sci. USA (2000) 97:8151–8156.
  • STOCKER JW, DE FRANCESCHI L, MCNAUGHTON-SMITH GA et aL: ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood (2003) 101:2412–2418.
  • KOEHLER R, WULFF H, EICHLER I et al.: Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation (2003) 108:1119–1125.
  • GRGIC I, EICHLER I, HEINAU P et al.: Selective blockade of the intermediate-conductance Ca2* -activated K* channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler. Thromb. Vasc. Biol. (2005) 25:704–709.
  • REICH: EP, CUI L, YANG L et al.: Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice. Eur. J. ImmunoL (2005) 35:1027–1036.
  • XU J, WANG P, LI Yet al.: The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc. Nail. Acad. Sci. USA (2004) 101:3112–3117.
  • XU J, KONI PA, WANG P et aL: The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum. MoL Genet. (2003) 12:551–559.
  • DORNER T, LIPSKY PE: Correlation of circulating CD27 high plasma cells and disease activity in systemic lupus erythematosus. Lupus (2004) 13:283–289.
  • BEETON C, CHANDY KG: Potassium channels, memory T cells and multiple sclerosis. Neuroscientist (in press).
  • FADOOL DA, TUCKER K, PERKINS R et al.: Kv1.3 Channel gene-targeted deletion produces 'super-smeller mice' with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron (2004) 41:389–404.

Websites

  • http://www.leaddiscovery.co.uk/reports/ rheumatoid°/020arthritis.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.