47
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent anticancer agents targeting sphingolipid pathways

, &
Pages 1129-1147 | Published online: 26 Jul 2006

Bibliography

  • FAHEY E, SUBRAMANIAM S, BROWN HA et al.: A comprehensive classification system for lipids. J. Lipid Res. (2005) 46(5):839-861.
  • NICKOLOVA-KARAKASHIAN M: Sphingolipid-mediated signal transduction. In: Molecular Biology Intelligence Unit. YA Hannun (Ed.), RG Landes Co. (1997):159.
  • HAKOMORI S: New directions in cancer therapy based on aberrant expression of glycosphingolipids; antiadhesion and ortho-signaling therapy. Cancer Cell (1991) 3:461-470.
  • HAKOMORI S: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. (1996) 56:5309-5318.
  • MARTINOVA EA: Influence of sphingolipids on T lymphocyte activation. Biochemistry (Moscow) (1998) 63(1):102-122.
  • FUTERMAN A: Distinct roles for sphingolipids and glycosphingolipids at different stages of neuronal development. Acta Biochim. Pol. (1998) 45(2):469-478.
  • KARIYA Y, KIHARA A, IKEDA M et al.: Products by the sphingosine kinase/sphingosine 1-phosphate (S1P) lyase pathway but not S1P stimulate mitogenesis. Genes Cells (2005) 10(6):605-615.
  • LAMOUR NF, CHALFANT CE: Ceramide-1-phosphate: the ‘missing’ link in eicosanoid biosynthesis and inflammation. Mol. Interv. (2005) 5(6):358-367.
  • MACEYKA M, SANKALA H, HAIT NC et al.: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. (2005) 280(44):37118-37129.
  • STEVENS VL, WINTON EF, SMITH EE, OWENS NE, KINKADE JM Jr, MERRILL AH Jr: Differential effects of long-chain (sphingoid) bases on the monocytic differentiation of human leukemia (HL-60) cells induced by phorbol esters, 1α, 25-dihydroxyvitamin D3, or ganglioside GM3. Cancer Res. (1989) 49(12):3229-3234.
  • BOREK C, ONG A, STEVENS VL, WANG E, MERRILL AH Jr: Long-chain (sphingoid) bases inhibit multistage carcinogenesis in mouse C3H/10T1/2 cells treated with radiation and phorbol 12-myristate 13-acetate. Proc. Natl. Acad. Sci. USA (1991) 88(5):1953-1957.
  • STEVENS VL, NIMKAR S, JAMISON WC, LIOTTA DC, MERRILL AH Jr: Characteristics of the growth inhibition and cytotoxicity of long-chain (sphingoid) bases for Chinese hamster ovary cells: evidence for an involvement of protein kinase C. Biochim. Biophys. Acta. (1990) 1051(1):37-45.
  • ENKVETCHAKUL B, MERRILL AH Jr, BIRT DF: Inhibition of ornithine decarboxylase activity in mouse epidermis by sphingosine sulfate. Carcinogenesis (1989) 10:379-381.
  • ENKVETCHAKUL B, BARNETT T, LIOTTA DC et al.: Influences of sphingosine on two-stage skin tumorigenesis in SENCAR mice. Cancer Lett. (1992) 62:35-42.
  • DILLEHAY DL, WEBB SK, SCHMELZ E-M, MERRILL AH Jr: Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J. Nutr. (1994) 124:615-620.
  • SCHMELZ EM, DILLEHAY D, WEBB S, REITER A, ADAMS J, MERRILL AH Jr: Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res. (1996) 56:4936-4941.
  • SCHMELZ EM, ROBERTS, PC, KUSTIN EM et al.: Modulation of intracellular β-catenin localization and intestinal tumorigenesis in vivo and in vitro by sphingolipids. Cancer Res. (2001) 61:6723-6729.
  • VESPER H, SCHMELZ E-M, NIKOLOVA-KARAKASHIAN MN, DILLEHAY DL, LYNCH DV, MERRILL AH Jr: Sphingolipids in food and the emerging importance of sphingolipids in nutrition. J. Nutr. (1999) 129:1239-1250.
  • SCHMELZ E-M, CRALL KJ, LAROCQUE R, DILLEHAY DL, MERRILL AH Jr: Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J. Nutr. (1994) 124:702-712.
  • IMAIZUMI K, TOMINAGA A, SATO M, SUGANO M: Effects of dietary sphingolipids on levels of serum and liver lipids in rats. Nutr. Res. (1992) 12:543-548.
  • MIZUTANI Y, KIHARA A, IGARASHI Y: Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. (2005) 390(Pt 1):263-271.
  • KOYBASI S, SENKAL CE, SUNDARARAJ K et al.: Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J. Biol. Chem. (2004) 279(43):44311-44319.
  • MERRILL AH Jr, WANG E, GILCHRIST DG, RILEY RT: Fumonisins and other inhibitors of de novo sphingolipid biosynthesis. Adv. Lipid Res. (1993) 26:215-234.
  • MICHEL C, VAN-ECHTEN-DECKERT G, ROTHER J, SANDHOFF K, WANG E, MERRILL AH Jr: Characterization of ceramide synthesis; a dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J. Biol. Chem. (1997) 272:22432-22437.
  • TRINCHERA M, GHIDONI R, SONNINO S, TETTAMANTI G: Recycling of glucosylceramide and sphingosine for the biosynthesis of gangliosides and sphingomyelin in rat liver. Biochem. J. (1990) 270(3):815-820.
  • HANADA K: New paradigm of membrane transport: ER-to-golgi trafficking of the lipid ceramide by a molecular extraction and transfer mechanism. Nippon Saikingaku Zasshi. (2005) 60(4):531-537.
  • DOLGACHEV V, FAROOQUI MS, KULAEVA OI et al.: De novo ceramide accumulation due to inhibition of its conversion to complex sphingolipids in apoptotic photosensitized cells. J. Biol. Chem. (2004) 279(22):23238-23249.
  • SWEENEY EA, IGARASHI Y: Increases in ceramide levels in normal human mesangial cells subjected to different cellular stresses result from changes in distinct enzyme activities and can influence cellular responses to other stimuli. J. Biochem. (Tokyo) (1999) 125(4):737-745.
  • LIU H, TOMAN RE, GOPARAJU SK et al.: Sphingosine kinase Type 2 is a putative BH3-only protein that induces apoptosis. J. Biol. Chem. (2003) 278(41):40330-40336.
  • REISS U, OSKOUIAN B, ZHOU J et al.: Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. J. Biol. Chem. (2004) 279(2):1281-1290.
  • MERRILL AH Jr, SCHMELZ EM, DILLEHAY DL et al.: Sphingolipids – the enigmatic lipid class; biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmcol. (1997) 142:208-225.
  • OGRETMEN B, HANNUN YA: Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer (2004) 4(8):604-616.
  • LIU Y-Y, HAN T-Y, GIULIANO AE, HANSEN N, CABOT MC: Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance. J. Biol. Chem. (2000) 275:7138-7143.
  • BIELAWSKA A, LINARDIC CM, HANNUN YA: Modulation of cell growth and differentiation by ceramide. FEBS Lett. (1992) 307:211-214.
  • FREDMAN P, WIKSTRAND CJ, MANSSON JE et al.: In vivo growth conditions suppress the expression of ganglioside GM2 and favour that of lacto series gangliosides in the human glioma D-54 MG cell line. Glycoconj. J. (1996) 13:391-399.
  • HANDA K, KOJIMA N, HAKOMORI S: Analysis of glycolipid-dependent cell adhesion based on carbohydrate–carbohydrate interaction. Meth. Enzymol. (2000) 312:447-458.
  • MERZAK A, KOOCHEKPOUR S, MCCREA S, ROXANIS Y, PILKINGTON GJ: Gangliosides modulate proliferation, migration, and invasiveness of human brain tumor cells in vitro. Mol. Chem. Neuropathol. (1995) 24:121-135.
  • LI R, MANELA J, KONG Y, LADISCH S: Cellular gangliosides promote growth factor-induced proliferation of fibroblasts. J. Biol. Chem. (2000) 275:34213-34223.
  • ZICHE M, MORBIDELLI L, ALESSANDRI G, GULLINO PM: Angiogenesis can be stimulated or repressed in vivo by a change in GM3:GD3 ganglioside ratio. Lab. Invest. (1992) 67:711-715.
  • MCKALLIP R, LI R, LADISCH S: Tumor gangliosides inhibit the tumor-specific immune response. J. Immunol. (1999) 163:3718-3726.
  • INOKUCHI J-I, MASON I, RADIN NS: Antitumor activity in mice of an inhibitor of glycosphingolipid biosynthesis. Cancer Lett. (1987) 38:23-30.
  • INOKUCHI J, JIMBO M, MOMOSAKI K, SHIMENO H, NAGAMATSU A, RADIN NS: Inhibition of experimental metastasis of murine Lewis lung carcinoma by an inhibitor of glucosylceramide synthase and its possible mechanism of action. Cancer Res. (1990) 50:6731-6737.
  • RADIN NS SHAYMAN JA: Use of an inhibitor of glucosylceramide synthase, 1-phenyl-2-decanoylamino-3-morpholino-propanol (PDMP), an inhibitor of glucosylceramide synthesis. In: NeuroProtocols, A Companion to Methods in Neurosciences. SK Fisher et al. (Eds), Academic Press, San Diego, USA (1993) 3:145-155.
  • RADIN NS SHAMAN JA, INOKUCHI J: Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. In: Advances in Lipid Research; Sphingolipids in Signaling, Part B. RM Bell et al. (Eds), Academic Press, San Diego, USA (1993) 28:183-213.
  • JACOB GS, SCUDDER P: Glycosidases in structural analysis. Meth. Enzymol. (1994) 230:280-299.
  • PLATT FM, NEISES GR, KARLSSON GB, DWEK RA, BUTTERS TD: N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J. Biol. Chem. (1994) 269:27108-27114.
  • LUCCI A, CHO WI, HAN T-Y, GIULIANO AE, MORTON DL, CABOT MC: Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res. (1998) 18(1B):475-480.
  • LAVIE Y, CAO HT, VOLNER A et al.: Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J. Biol. Chem. (1997) 272:1682-1687.
  • NICHOLSON KM, QUINN DM, KELLETT GL, WARR JR: Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase. Br. J. Cancer (1999) 81:423-430.
  • LIU Y-Y, HAN T-Y, GIULIANO AE, CABOT MC: Expression of glucosylceramide synthase, converting ceramide to glucosylceramide confers adriamycin resistance in human breast cancer cells. J. Biol. Chem. (1999) 274:1140-1146.
  • LINARDIC CM, HANNUN YA: Identification of a distinct pool of sphingomyelin involved in the sphingomyelin cycle. J. Biol. Chem. (1994) 269:23530-23537.
  • LIU B, OBIED LM, HANNUN YA: Sphingomyelinases in cell regulation. Semin. Cell. Dev. Biol. (1997) 8:311-322.
  • WIEDER T, ORFANOS CE, GEILEN CC: Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. J. Biol. Chem. (1998) 273:11025-11031.
  • KOIZUMIA K, SHIMIZUB S, KOIZUMIA KT et al.: Rapid isolation and lipid characterization of plasma membranes from normal and malignant lymphoid cells of mouse. Biochim. Biophys. Acta (1991) 649:393-403.
  • VAN BLITTERSWIJK WJ, HILKMANN H, HENGEVELD T: Differences in membrane lipid composition and fluidity of transplanted grsl lymphoma cells, depending on their site of growth in the mouse. Biochim. Biophys. Acta (1984) 778:521-529.
  • SPIEGEL S, MILSTIEN S: Sphingosine 1-phosphate: an enigmatic signaling lipid. Nat. Rev. Mol. Cell Biol. (2003) 5:397-407.
  • SADAHIRA Y, RUAN F, HAKOMORI S, IGARASHI Y: Sphingosine 1-phosphate, a specific endogeneous signaling molecule controlling cell motility and tumor cell invasiveness. Proc. Natl. Acad. Sci USA (1992) 89:9686-9690.
  • LEE MJ, THANGADA S, CLAFFEY KP et al.: Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine 1-phosphate. Cell (1999) 99:301-312.
  • HISANO N, YATOMI Y, SATOH K et al.: Induction and suppression of endothelial cell apoptosis by sphingolipids: a possible in vitro model for cell–cell interactions between platelets and endothelial cells. Blood (1999) 93:4293-4299.
  • XIA P, WANG L, BAMBLE JR, VADAS MA: Activation of sphingosine kinase by tumor necrosis factor inhibits apoptosis in human endothelial cells. J. Biol. Chem. (1999) 274:34499-34505.
  • MILSTIEN S, SPIEGEL S: Targeting sphingosine 1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell (2006) 3:148-150.
  • LAMONTAGNE K, LITTLEWOOD-EVANS A, SCHNELL C et al.: Antagonism of sphingosine 1-phosphate receptors by FTY-720 inhibits angiogenesis and tumor vascularization. Cancer Res. (2006) 66:221-231.
  • HO JW, MAN K, SUN CK, LEE TK, POON RTP, FAN ST: Effects of a novel immunomodulating agent, FTY-720, on tumor growth and angiogenesis in hepatocellular carcinoma. Mol. Cancer Ther. (2005) 4:1430-1438.
  • CHUA CW, LEE DT, LING MT et al.: FTY-720, a fungus metabolite, inhibits in vivo growth of androgen-independent prostate cancer. Int. J. Cancer (2005) 117:1039-1048.
  • VISENTIN B, VEKICH JA, SIBBALD BJ et al.: Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell (2006) 9:225-238.
  • XIA P, VADAS MA, RYE K, BARTER PJ, GAMBLE JR: High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway: a possible mechanism for protection against atherosclerosis by HDL. J. Biol. Chem. (1999) 274:33143-33147.
  • LEE MJ, VAN BROCKLYN JR, THANGADA S et al.: Sphingosine-1-phosphate as a ligand for the G-protein coupled receptor EDG-1. Science (1998) 279:1552-1555.
  • ANCELLIN N, HLA T: Differential pharmacological properties and signal transduction of the sphingosine-1-phosphate receptors EDG-1, -3, and -5. J. Biol. Chem. (1999) 274:18997-19002.
  • LINN SC, KIM HS, KEANE EM, ANDRAS LM, WANG E, MERRILL AH Jr: Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem. Soc. Trans. (2001) 29(Pt 6):831-835.
  • BUEHRER BM, BELL RM: Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J. Biol. Chem. (1992) 267:3154-3159.
  • HUMPF H-U, SCHMELZ E-M, MEREDITH FI et al.: Acylation of naturally occurring and synthetic 1-deoxysphinganines by ceramide synthase: formation of N-palmitoyl-aminopentol (PAP1) produces a toxic metabolite of hydrolyzed fumonisin (AP1), and a new category of ceramide synthase inhibitor. J. Biol. Chem. (1998) 273:19060-19066.
  • DRAGUSIN M, GURGUI C, SCHWARZMANN G, HOERNSCHEMEYER J, VAN ECHTEN-DECKERT G: Metabolism of the unnatural anticancer lipid safingol, l-threo-dihydrosphingosine, in cultured cells. J. Lipid Res. (2003) 44:1772-1779.
  • KEDDERIS LB, BOZIGIAN HP, KLEEMAN JM et al.: Toxicity of the protein kinase C inhibitor safingol administered alone and in combination with chemotherapeutic agents. Fundam. Appl. Toxicol. (1995) 25:201-217.
  • SCHWARTZ GK, WARD D, SALTZ L et al.: A pilot clinical/pharmacological study of the protein kinase C-specific inhibitor safingol alone and in combination with doxorubicin. Clin. Cancer Res. (1997) 3(4):537-543.
  • SMITH ER, JONES PL, BOSS JM, MERRILL AH Jr: Changing J774A.1 cells to new medium perturbs multiple signaling pathways, including the modulation of protein kinase C by endogenous sphingoid bases. J. Biol. Chem. (1997) 272:5640-5646.
  • MEREDITH JE Jr, FAZELI B, SCHWARTZ MA: The extracellular matrix as a cell survival factor. Mol. Biol. Cell. (1993) 4:953-961.
  • RE F, ZANETTI A, SIRONI M et al.: Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J. Cell Biol. (1994) 127:537-546.
  • FREIDLANDER M, BROOKS PC, SHAFFER RW, KINCAID CM, VARNER JA, CHERESH DA: Definition of two angiogenic pathways by distinct integrins. Science (1995) 270:1500-1502.
  • BIERCERICH E, SILVA J, WANG G, KRISHNAMURTHY K, CONDI BG: Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cells-derived neural transplants. J. Cell Biol. (2004) 4:723-734.

Patents

  • THE LIPOSOME COMPANY, INC.: WO2001072701 (2001).
  • BRACCO SP.A: WO2001007418 (2001).
  • MUSC FOUNDATION FOR RESEARCH DEVELOPMENT: WO2003005965 (2003).
  • OXFORD GLYCOSCIENCES (UK) LIMITED: WO2001068093 (2001).
  • OXFORD GLYCOSCIENCES (UK) LTD.: WO2002055498 (2002).
  • THE UNIVERSITY OF MICHIGAN: WO2002062777 (2002).
  • THE UNIVERSITY OF MICHIGAN: WO2001004108 (2001).
  • GENZYME CORPORATION AND THE REGENTS OF THE UNIVERSITY OF MICHIGAN: US6916802 (2005).
  • JOHN WAYNE CANCER INSTITUTE: WO2001036628 (2001).
  • RIKAGAKU KENKYUSHO: US5780284 (1998).
  • YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM: WO2001079152 (2001).
  • YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM: WO2003027058 (2003).
  • YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM: US6756504 (2004).
  • JAPAN SCIENCE AND TECHNOLOGY CORPORATION: WO2002089784 (2002).
  • CENTER FOR MOLECULAR MEDICINE AND IMMUNOLOGY: WO2000057916 (2000).
  • DEUTSCHES KREBSFORSCHUNGSZENTRUM: WO2001066709 (2001).
  • UNIVERSITY OF HEIDELBERG: WO2000072833 (2000).
  • MED-VET SCIENCE PTY. LTD.: WO2001085953 (2001).
  • JOHNSON & JOHNSON RESEARCH PTY. LIMITED: WO2000070028 (2000).
  • BAYER AKTIENGESELLSCHAFT: WO2002028906 (2002).
  • JOHNSON & JOHNSON PHARMACEUTICAL RESEARCH AND DEVELOPMENT LLC: US6730480 (2004).
  • SPIEGEL: US6830916 (2004).
  • UNIVERSITY OF VIRGINIA PATENT FOUNDATION: WO2002064616 (2002).
  • AVENTIS PHARMA DEUTSCHLAND GMBH: WO2001081573 (2001).
  • UNIVERSITY OF CONNECTICUT: WO2002017899 (2002).
  • CHILDREN’S HOSPITAL & RESEARCH INSTITUTE AT OAKLAND: US6830881 (2004).
  • EMORY UNIVERSITY: US6720184 (2004).
  • CHILDREN’S HOSPITAL OF LOS ANGELES: WO2000000207 (2000).
  • CHILDRENS HOSPITAL LOS ANGELES RESEARCH INSTITUTE: WO2001047513 (2001).
  • ROGER WILLIAMS HOSPITAL: WO2000059517 (2000).
  • EMORY UNIVERSITY: WO2001037836 (2001).
  • CHILDRENS HOSPITAL LOS ANGELES RESEARCH INSTITUTE: WO2001037871 (2001).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.