47
Views
13
CrossRef citations to date
0
Altmetric
Review

Strategies for atrial fibrillation therapy: focusing on IKur potassium channel

, , , &
Pages 1443-1456 | Published online: 06 Dec 2007

Bibliography

  • GO AS, HYLEK EM, PHILLIPS KA et al.: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. JAMA (2001) 285(18):2370-2375.
  • STEWART S, MURPHY N, WALKER A, MCGUIRE A, MCMURRAY JJ: Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart (2004) 90(3):286-292.
  • Retrospective investigation of hospitalized patients with atrial fibrillation in mainland China. Chin. Med. J. (Engl.) (2004) 117(12):1763-1767.
  • HONDEGHEM LM: Classification of antiarrhythmic agents and the two laws of pharmacology. Cardiovasc. Res. (2000) 45(1):57-60.
  • STROOBANDT R, STIELS B, HOEBRECHTS R: Propafenone for conversion and prophylaxis of atrial fibrillation. Propafenone atrial fibrillation trial investigators. Am. J. Cardiol. (1997) 79(4):418-423.
  • ALIOT E, DENJOY I: Comparison of the safety and efficacy of flecainide versus propafenone in hospital out-patients with symptomatic paroxysmal atrial fibrillation/flutter. The flecainide AF French study group. Am. J. Cardiol. (1996) 77(3):A66-A71.
  • LOMBARDI F, BORGGREFE M, RUZYLLO W, LUDERITZ B: Azimilide vs placebo and sotalol for persistent atrial fibrillation: the A-COMET-II (azimilide-cardioversion maintenance trial-II) trial. Eur. Heart J. (2006) 27(18):2224-2231.
  • NACCARELLI GV, WOLBRETTE DL, KHAN M et al.: Old and new antiarrhythmic drugs for converting and maintaining sinus rhythm in atrial fibrillation: comparative efficacy and results of trials. Am. J. Cardiol. (2003) 91(6A):D15-D26.
  • NACCARELLI GV, WOLBRETTE DL, BHATTA L et al.: A review of clinical trials assessing the efficacy and safety of newer antiarrhythmic drugs in atrial fibrillation. J. Interv. Card. Electrophysiol. (2003) 9(2):215-222.
  • PRITCHETT EL: Symptomatic arrhythmia recurrence as an outcome in clinical trials of antiarrhythmic drug therapy. Heart Rhythm (2004) 1(2 Suppl.):B36-B39; discussion B39-B40.
  • ELMING H, BRENDORP B, PEHRSON S et al.: A benefit-risk assessment of class III antiarrhythmic agents. Expert Opin. Drug Saf. (2004) 3(6):559-577.
  • TAMKUN MM, KNOTH KM, WALBRIDGE JA et al.: Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle. FASEB J. (1991) 5(3):331-337.
  • SNYDERS DJ, TAMKUN MM, BENNETT PB: A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J. Gen. Physiol. (1993) 101(4):513-543.
  • FEDIDA D, WIBLE B, WANG Z et al.: Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ. Res. (1993) 73(1):210-216.
  • WANG Z, FERMINI B, NATTEL S: Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res. (1993) 73(6):1061-1076.
  • LI GR, FENG J, WANG Z, FERMINI B, NATTEL S: Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circ. Res. (1996) 78(5):903-915.
  • FENG J, WIBLE B, LI GR, WANG Z, NATTEL S: Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ. Res. (1997) 80(4):572-579.
  • YELLEN G: The moving parts of voltage-gated ion channels. Q. Rev. Biophys. (1998) 31(3):239-295.
  • MACKINNON R: Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem. Int. Ed. Engl. (2004) 43(33):4265-4277.
  • JIANG Y, LEE A, CHEN J et al.: The open pore conformation of potassium channels. Nature (2002) 417(6888):523-526.
  • ROUX B, MACKINNON R: The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science (1999) 285(5424):100-102.
  • JIANG Y, LEE A, CHEN J et al.: X-ray structure of a voltage-dependent K+ channel. Nature (2003) 423(6935):33-41.
  • LONG SB, CAMPBELL EB, MACKINNON R: Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science (2005) 309(5736):903-908.
  • LONG SB, CAMPBELL EB, MACKINNON R: Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science (2005) 309(5736):897-903.
  • HACKOS DH, CHANG TH, SWARTZ KJ: Scanning the intracellular S6 activation gate in the shaker K+ channel. J. Gen. Physiol. (2002) 119(6):521-532.
  • LU Z, KLEM AM, RAMU Y: Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J. Gen. Physiol. (2002) 120(5):663-676.
  • VAN WAGONER DR, POND AL, MCCARTHY PM, TRIMMER JS, NERBONNE JM: Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res. (1997) 80(6):772-781.
  • BRANDT MC, PRIEBE L, BOHLE T, SUDKAMP M, BEUCKELMANN DJ: The ultrarapid and the transient outward K(+) current in human atrial fibrillation. Their possible role in postoperative atrial fibrillation. J. Mol. Cell. Cardiol. (2000) 32(10):1885-1896.
  • BRUNNER M, KODIROV SA, MITCHELL GF et al.: In vivo gene transfer of Kv1.5 normalizes action potential duration and shortens QT interval in mice with long QT phenotype. Am. J. Physiol. Heart Circ. Physiol. (2003) 285(1):H194-H203.
  • FRANQUEZA L, LONGOBARDO M, VICENTE J et al.: Molecular determinants of stereoselective bupivacaine block of hKv1.5 channels. Circ. Res. (1997) 81(6):1053-1064.
  • CABALLERO R, MORENO I, GONZALEZ T et al.: Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5). Cardiovasc. Res. (2002) 56(1):104-117.
  • DECHER N, PIRARD B, BUNDIS F et al.: Molecular basis for Kv1.5 channel block: conservation of drug binding sites among voltage-gated K+ channels. J. Biol. Chem. (2004) 279(1):394-400.
  • DECHER N, KUMAR P, GONZALEZ T, PIRARD B, SANGUINETTI MC: Binding site of a novel Kv1.5 blocker: a “foot in the door” against atrial fibrillation. Mol. Pharmacol. (2006) 70(4):1204-1211.
  • RODRIGUEZ-MENCHACA A, FERRER-VILLADA T, LARA J et al.: Block of HERG channels by berberine: mechanisms of voltage- and state-dependence probed with site-directed mutant channels. J. Cardiovasc. Pharmacol. (2006) 47(1):21-29.
  • WATTANASIRICHAIGOON D, BEGGS AH: Molecular genetics of long-QT syndrome. Curr. Opin. Pediatr. (1998) 10(6):628-634.
  • DU LP, LI MY, TSAI KC, YOU QD, XIA L: Characterization of binding site of closed-state KCNQ1 potassium channel by homology modeling, molecular docking, and pharmacophore identification. Biochem. Biophys. Res. Commun. (2005) 332(3):677-687.
  • DU LP, LI MY, YOU QD, XIA L: A novel structure-based virtual screening model for the hERG channel blockers. Biochem. Biophys. Res. Commun. (2007) 355(4):889-894.
  • LUZHKOV VB, NILSSON J, ARHEM P, AQVIST J: Computational modelling of the open-state Kv 1.5 ion channel block by bupivacaine. Biochim. Biophys. Acta (2003) 1652(1):35-51.
  • PIRARD B, BRENDEL J, PEUKERT S: The discovery of Kv1.5 blockers as a case study for the application of virtual screening approaches. J. Chem. Inf. Model. (2005) 45(2):477-485.
  • PEUKERT S, BRENDEL J, PIRARD B et al.: Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel Kv1.5. J. Med. Chem. (2003) 46(4):486-498.
  • PEUKERT S, BRENDEL J, PIRARD B et al.: Pharmacophore-based search, synthesis, and biological evaluation of anthranilic amides as novel blockers of the Kv1.5 channel. Bioorg. Med. Chem. Lett. (2004) 14(11):2823-2827.
  • REZAZADEH S, CLAYDON TW, FEDIDA D: KN-93 (2-[N-(2-hydroxyethyl)]- N-(4-methoxybenzenesulfonyl) amino-N-(4-chlorocinn amyl)- N-methylbenzylamine), a calcium/calmodulin-dependent protein kinase II inhibitor, is a direct extracellular blocker of voltage-gated potassium channels. J. Pharmacol. Exp. Ther. (2006) 317(1):292-299.
  • DE HAAN S, GREISER M, HARKS E et al.: AVE0118, blocker of the transient outward current (I(to)) and ultrarapid delayed rectifier current (I(Kur)), fully restores atrial contractility after cardioversion of atrial fibrillation in the goat. Circulation (2006) 114(12):1234-1242.
  • GOGELEIN H, BRENDEL J, STEINMEYER K et al.: Effects of the atrial antiarrhythmic drug AVE0118 on cardiac ion channels. Naunyn Schmiedebergs Arch. Pharmacol. (2004) 370(3):183-192.
  • OROS A, VOLDERS PG, BEEKMAN JD, VAN DER NAGEL T, VOS MA: Atrial-specific drug AVE0118 is free of torsades de pointes in anesthetized dogs with chronic complete atrioventricular block. Heart Rhythm (2006) 3(11):1339-1345.
  • WIRTH KJ, PAEHLER T, ROSENSTEIN B et al.: Atrial effects of the novel K(+)-channel-blocker AVE0118 in anesthetized pigs. Cardiovasc. Res. (2003) 60(2):298-306.
  • BLAAUW Y, GOGELEIN H, TIELEMAN RG et al.: “Early” class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation (2004) 110(13):1717-1724.
  • WETTWER E, HALA O, CHRIST T et al.: Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation (2004) 110(16):2299-2306.
  • KNOBLOCH K, BRENDEL J, PEUKERT S et al.: Electrophysiological and antiarrhythmic effects of the novel IKur channel blockers, S9947 and S20951, on left vs right pig atrium In vivo in comparison with the IKr blockers dofetilide, azimilide, DL-sotalol and ibutilide. Naunyn Schmiedebergs Arch. Pharmacol. (2002) 366(5):482-487.
  • BACHMANN A, GUTCHER I, KOPP K et al.: Characterization of a novel Kv1.5 channel blocker in Xenopus oocytes, CHO cells, human and rat cardiomyocytes. Naunyn Schmiedebergs Arch. Pharmacol. (2001) 364(5):472-478.
  • NATTEL S, ZENG FD: Frequency-dependent effects of antiarrhythmic drugs on action potential duration and refractoriness of canine cardiac Purkinje fibers. J. Pharmacol. Exp. Ther. (1984) 229(1):283-291.
  • LLOYD DG, BUENEMANN CL, TODOROV NP, MANALLACK DT, DEAN PM: Scaffold hopping in de novo design. Ligand generation in the absence of receptor information. J. Med. Chem. (2004) 47(3):493-496.
  • TROTTER BW, NANDA KK, KETT NR et al.: Design and synthesis of novel isoquinoline-3-nitriles as orally bioavailable Kv1.5 antagonists for the treatment of atrial fibrillation. J. Med. Chem. (2006) 49(24):6954-6957.
  • FEDIDA D, ELDSTROM J, HESKETH JC et al.: Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes. Circ. Res. (2003) 93(8):744-751.
  • NANDA KK, NOLT MB, CATO MJ et al.: Potent antagonists of the Kv1.5 potassium channel: synthesis and evaluation of analogous N,N-diisopropyl-2-(pyridine-3-yl)acetamides. Bioorg. Med. Chem. Lett. (2006) 16(22):5897-5901.
  • JACKSON CM, BLASS B, COBURN K et al.: Evolution of thiazolidine-based blockers of human Kv1.5 for the treatment of atrial arrhythmias. Bioorg. Med. Chem. Lett. (2007) 17(1):282-284.
  • BLASS BE, COBURN K, LEE W et al.: Synthesis and evaluation of (2-phenethyl-2H-1,2,3-triazol-4-yl)(phenyl)methanones as Kv1.5 channel blockers for the treatment of atrial fibrillation. Bioorg. Med. Chem. Lett. (2006) 16(17):4629-4632.
  • WU S, FLUXE A, SHEFFER J et al.: Discovery and in vivo studies of tetrazole derivatives as Kv1.5 blockers. Bioorg. Med. Chem. Lett. (2006) 16(24):6213-6218.
  • WU S, FLUXE A, JANUSZ JM et al.: Discovery and synthesis of tetrahydroindolone derived semicarbazones as selective Kv1.5 blockers. Bioorg. Med. Chem. Lett. (2006) 16(22):5859-5863.
  • FLUXE A, WU S, SHEFFER JB et al.: Discovery and synthesis of tetrahydroindolone-derived carbamates as Kv1.5 blockers. Bioorg. Med. Chem. Lett. (2006) 16(22):5855-5858.
  • GROSS MF, BEAUDOIN S, MCNAUGHTON-SMITH G et al.: Aryl sulfonamido indane inhibitors of the Kv1.5 ion channel. Bioorg. Med. Chem. Lett. (2007) 17(10):2849-2853.
  • LLOYD J, ATWAL KS, FINLAY HJ et al.: Benzopyran sulfonamides as Kv1.5 potassium channel blockers. Bioorg. Med. Chem. Lett. (2007) 17(12):3271-3275.
  • MATSUDA T, MASUMIYA H, TANAKA N et al.: Inhibition by a novel anti-arrhythmic agent, NIP-142, of cloned human cardiac K+ channel Kv1.5 current. Life Sci. (2001) 68(17):2017-2024.
  • NAGASAWA H, FUJIKI A, FUJIKURA N et al.: Effects of a novel class III antiarrhythmic agent, NIP-142, on canine atrial fibrillation and flutter. Circ. J. (2002) 66(2):185-191.
  • MATSUDA T, ITO M, ISHIMARU S et al.: Blockade by NIP-142, an antiarrhythmic agent, of carbachol-induced atrial action potential shortening and GIRK1/4 channel. J. Pharmacol. Sci. (2006) 101(4):303-310.
  • MATSUDA T, TAKEDA K, ITO M et al.: Atria selective prolongation by NIP-142, an antiarrhythmic agent, of refractory period and action potential duration in guinea pig myocardium. J. Pharmacol. Sci. (2005) 98(1):33-40.
  • ORTH PM, HESKETH JC, MAK CK et al.: RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc. Res. (2006) 70(3):486-496.
  • FEDIDA D, ORTH PM, CHEN JY et al.: The mechanism of atrial antiarrhythmic action of RSD1235. J. Cardiovasc. Electrophysiol. (2005) 16(11):1227-1238.
  • Vernakalant: RSD 1235, RSD-1235, RSD1235. Drugs R&D (2007) 8(4):259-265.
  • BILLMAN GE: RSD-1235. Cardiome. Curr. Opin. Investig. Drugs (2003) 4(3):352-354.
  • FEDIDA D: Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent. Expert Opin. Investig. Drugs (2007) 16(4):519-532.
  • ROY D, ROWE BH, STIELL IG et al.: A randomized, controlled trial of RSD1235, a novel anti-arrhythmic agent, in the treatment of recent onset atrial fibrillation. J. Am. Coll. Cardiol. (2004) 44(12):2355-2361.
  • GOLDSTEIN RN, KHRESTIAN C, CARLSSON L, WALDO AL: Azd7009: a new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. J. Cardiovasc. Electrophysiol. (2004) 15(12):1444-1450.
  • PERSSON F, CARLSSON L, DUKER G, JACOBSON I: Blocking characteristics of hERG, hNav1.5, and hKvLQT1/hminK after administration of the novel anti-arrhythmic compound AZD7009. J. Cardiovasc. Electrophysiol. (2005) 16(3):329-341.
  • LOFBERG L, JACOBSON I, CARLSSON L: Electrophysiological and antiarrhythmic effects of the novel antiarrhythmic agent AZD7009: a comparison with azimilide and AVE0118 in the acutely dilated right atrium of the rabbit in vitro.Europace (2006) 8(7):549-557.
  • CRIJNS HJ, VAN GELDER IC, WALFRIDSSON H et al.: Safe and effective conversion of persistent atrial fibrillation to sinus rhythm by intravenous AZD7009. Heart Rhythm (2006) 3(11):1321-1331.
  • CAMM AJ, PRATT CM, SCHWARTZ PJ et al.: Mortality in patients after a recent myocardial infarction: a randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation (2004) 109(8):990-996.
  • PRITCHETT EL, MARCELLO SR: Azimilide for atrial fibrillation: clinical trial results and implications. Card. Electrophysiol. Rev. (2003) 7(3):215-219.
  • PRITCHETT EL, KOWEY P, CONNOLLY S et al.: Antiarrhythmic efficacy of azimilide in patients with atrial fibrillation. Maintenance of sinus rhythm after conversion to sinus rhythm. Am. Heart J. (2006) 151(5):1043-1049.
  • KHANDERIA U, WAGNER D, WALKER PC, WOODCOCK B, PRAGER R: Amiodarone for atrial fibrillation following cardiac surgery: development of clinical practice guidelines at a university hospital. Clin. Cardiol. (2007); [Epub ahead of print].
  • TOUBOUL P, BRUGADA J, CAPUCCI A et al.: Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur. Heart J. (2003) 24(16):1481-1487.
  • HOHNLOSER SH, DORIAN P, STRAUB M, BECKMANN K, KOWEY P: Safety and efficacy of intravenously administered tedisamil for rapid conversion of recent-onset atrial fibrillation or atrial flutter. J. Am. Coll. Cardiol. (2004) 44(1):99-104.

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.