86
Views
0
CrossRef citations to date
0
Altmetric
Review

Developing a neuroprotective therapy for Parkinson’s and Huntington’s diseases

Pages 159-172 | Published online: 31 Jan 2007

Bibliography

  • DINSMORE JH: Treatment of neurodegenerative diseases with neural cell transplantation. Expert Opin. Investig. Drugs (1998) 7(4):527-534.
  • SAILOR KA, MING GL, SONG H: Neurogenesis as a potential therapeutic strategy for neurodegenerative diseases. Expert. Opin. Biol. Ther. (2006) 6(9):879-890.
  • SAH DW: Therapeutic potential of RNA interference for neurological disorders. Life Sci. (2006) 79(19):1773-1780.
  • BONINI NM, LA SPADA AR: Silencing polyglutamine degeneration with RNAi. Neuron (2005) 48(5):715-718.
  • MANFREDSSON FP, LEWIN AS, MANDEL RJ: RNA knockdown as a potential therapeutic strategy in Parkinson's disease. Gene Ther. (2006) 13(6):517-524.
  • XIA H, MAO Q, ELIASON SL et al.: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. (2004) 10(8):816-820.
  • HARPER SQ, STABER PD, HE X et al.: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl. Acad. Sci. USA (2005) 102(16):5820-5825.
  • SAPRU MK, YATES JW, HOGAN S, JIANG L, HALTER J, BOHN MC: Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp. Neurol. (2006) 198(2):382-390
  • KUBODERA T, YOKOTA T, ISHIKAWA K, MIZUSAWA H: New RNAi strategy for selective suppression of a mutant allele in polyglutamine disease. Oligonucleotides (2005) 15(4):298-302.
  • RAOUL C, BARKER SD, AEBISCHER P: Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene. Ther. (2006) 15(6):487-495.
  • FINKBEINER S, CUERVO AM, MORIMOTO RI, MUCHOWSKI PJ: Disease-modifying pathways in neurodegeneration. J. Neurosci. (2006) 26(41):10349-10357.
  • NOLLEN EA, GARCIA SM, VAN HAAFTEN G et al.: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA (2004) 101(17):6403-6408.
  • KROBITSCH S, LINDQUIST S: Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA (2000) 97(4):1589-1594.
  • OUTEIRO TF, LINDQUIST S: Yeast cells provide insight into α-synuclein biology and pathobiology. Science (2003) 302(5651):1772-5.
  • GIORGINI F, GUIDETTI P, NGUYEN Q, BENNETT SC, MUCHOWSKI PJ: A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington’s disease. Nat. Genet. (2005) 37(5):526-531.
  • ROVER S, CESURA AM, HUGUENIN P, KETTLER R, SZENTE A: Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem. (1997) 40(26):4378-4385.
  • NEMETH H, TOLDI J, VECSEI L: Kynurenines, Parkinson's disease and other neurodegenerative disorders: preclinical and clinical studies. J. Neural. Transm. Suppl. (2006) 70:285-304.
  • BEAL MF: Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. (1992) 31(2):119-130.
  • BROWNE SE, BEAL MF: Oxidative damage and mitochondrial dysfunction in neurodegenerative diseases. Biochem. Soc. Trans. (1994) 22(4):1002-1006.
  • BEAL MF: Aging, energy and oxidative stress in neurodegenerative diseases. Ann. Neurol. (1995) 38(3):357-366.
  • MATTHEWS RT, YANG L, JENKINS BG et al.: Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease. J. Neurosci. (1998) 18(1):156-163.
  • ANDREASSEN OA, DEDEOGLU A, FERRANTE RJ et al.: Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington's disease. Neurobiol. Dis. (2001) 8(3):479-491.
  • DEDEOGLU A, KUBILUS JK, YANG L et al.: Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice. J. Neurochem. (2003) 85(6):1359-1367.
  • VERBESSEM P, LEMIERE J, EIJNDE BO et al.: Creatine supplementation in Huntington's disease: a placebo-controlled pilot trial. Neurology (2003) 61(7):925-930.
  • BEAL MF: Bioenergetic approaches for neuroprotection in Parkinson's disease. Ann. Neurol. (2003) 53:39-48.
  • ANDRES RH, DUCRAY AD, PEREZ-BOUZAA et al.: Creatine supplementation improves dopaminergic cell survival and protects against MPP+ toxicity in an organotypic tissue culture system. Cell Transplant. (2005) 14(8):537-550.
  • RYU H, ROSAS HD, HERSCH SM, FERRANTE RJ: The therapeutic role of creatine in Huntington's disease. Pharmacol. Ther. (2005) 108(2):193-207.
  • HERSCH SM, GEVORKIAN S, MARDER K et al.: Creatine in Huntington’s disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology (2006) 66(2):250-252.
  • NINDS NET-PD INVESTIGATORS: A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology (2006) 66(5):664-671.
  • HA HC, SNYDER SH: Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol. Dis. (2000) 7(4):225-239.
  • BOGDANOV MB, ANDREASSEN OA, DEDEOGLU A, FERRANTE RJ, BEAL MF: Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J. Neurochem. (2001) 79(6):1246-1249.
  • VIRAG L, SZABO C: The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. (2002) 54(3):375-429.
  • TENTORI L, PORTARENA I, GRAZIANI G: Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol. Res. (2002) 45(2):73-85.
  • DAWSON VL, DAWSON TM: Deadly conversations: nuclear-mitochondrial cross-talk. J. Bioenerg. Biomembr. (2004) 36(4):287-294.
  • KOH DW, DAWSON TM, DAWSON VL: Poly(ADP-ribosyl)ation regulation of life and death in the nervous system. Cell Mol. Life Sci. (2005) 62(7-8):760-768.
  • ERDELYI K, BAKONDI E, GERGELY P, SZABO C, VIRAG L: Pathophysiologic role of oxidative stress-induced poly(ADP-ribose) polymerase-1 activation: focus on cell death and transcriptional regulation. Cell Mol. Life Sci. (2005) 62(7-8):751-759.
  • LIN MT, BEAL MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature (2006) 443(7113):787-795.
  • SKALITZKY DJ, MARAKOVITS JT, MAEGLEY KA et al.: Tricyclic Benzimidazoles as Potent Poly(ADP-ribose) Polymerase-1 Inhibitors. J. Med. Chem. (2003) 46(2):210- 213.
  • HATTORI K, KIDO Y, YAMAMOTO H et al.: Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase. J. Med. Chem. (2004) 47(17):4151-4154.
  • IWASHITA A, MIHARA K, YAMAZAKI S et al.: A new poly(ADP-ribose) polymerase inhibitor, FR261529 [2-(4-chlorophenyl)- 5-quinoxalinecarboxamide], ameliorates methamphetamine-induced dopaminergic neurotoxicity in mice. J. Pharmacol. Exp. Ther. (2004) 310(3):1114-1124.
  • IWASHITA A, YAMAZAKI S, MIHARA K et al.: Neuroprotective effects of a novel poly(ADP-ribose) polymerase-1 inhibitor, 2-[3-[4-(4-chlorophenyl)-1- piperazinyl] propyl]-4(3H)-quinazolinone (FR255595), in an in vitro model of cell death and in mouse 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J. Pharmacol. Exp. Ther. (2004) 309(3):1067-1078.
  • ALTMANN SM, MURYSHEV A, FOSSALE E et al.: Discovery of bioactive small-molecule inhibitor of poly adp-ribose polymerase: implications for energy-deficient cells. Chem. Biol. (2006) 13(7):765-770.
  • CHEN M, ONA VO, LI M et al.: Minocycline inhibits caspase-1 and -3 expression and delays mortality in a transgenic mouse model of Huntington’s disease. Nat. Med. (2000) 6(7):797-801.
  • WANG X, ZHU S, DROZDA M, ZHANG W et al.: Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc. Natl. Acad. Sci. USA (2003) 100(18):10483-10487.
  • THOMAS M, ASHIZAWA T, JANKOVIC J: Minocycline in Huntington's disease: a pilot study. Mov. Disord. (2004) 19(6):692-695.
  • QUINTERO EM, WILLIS L, SINGLETON R et al.: Behavioral and morphological effects of minocycline in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res. (2006) 1093(1):198-207.
  • BLUM D, CHTARTO A, TENENBAUM L, BROTCHI J, LEVIVIER M: Clinical potential of minocycline for neurodegenerative disorders. Neurobiol. Dis. (2004) 17(3):359-366.
  • FERRANTE RJ, ANDREASSEN OA, DEDEOGLU A et al.: Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. (2002) 22(5):1592-1599.
  • SHULTS CW, FLINT BEAL M, SONG D, FONTAINE D: Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson's disease. Exp. Neurol. (2004) 188(2):491-494.
  • ALANO CC, KAUPPINEN TM, VALLS AV, SWANSON RA: Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc. Natl. Acad. Sci. USA (2006) 103(25):9685-9690.
  • STACK EC, SMITH KM, RYU H et al.: Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington's disease mice. Biochim. Biophys. Acta. (2006) 1762(3):373-380.
  • MORTON AJ, HUNT MJ, HODGES AK et al.: A combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease. Eur. J. Neurosci. (2005) 21(4):855-870.
  • RYU JK, CHOI HB, MCLARNON JG: Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage and neuronal loss in an excitotoxic animal model of Huntington's disease. Neuroscience (2006) 141(4):1835-1848.
  • BUCK SW, GALLO CM, SMITH JS: Diversity in the Sir2 family of protein deacetylases. J. Leukoc. Biol. (2004) 75(6):939-950.
  • LAMMING DW, WOOD JG, SINCLAIR DA: Small molecules that regulate lifespan: evidence for xenohormesis. Mol. Microbiol. (2004) 53(4):1003-1009.
  • MASORO EJ: Role of sirtuin proteins in life extension by caloric restriction. Mech. Ageing. Dev. (2004) 125(9):591-594.
  • DENU JM: The Sir 2 family of protein deacetylases. Curr. Opin. Chem. Biol. (2005) 9(5):431-440.
  • PORCU M, CHIARUGI A: The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol. Sci. (2005) 26(2):94-103.
  • SOMMER M, POLIAK N, UPADHYAY S et al.: δNp63α overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse. Cell Cycle. (2006) 5(17):2005-2011.
  • BAUR JA, SINCLAIR DA: Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug. Discov. (2006) 5(6):493-506.
  • PARKER JA, ARANGO M, ABDERRAHMANE S et al.: Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat. Genet. (2005) 37(4):349-350.
  • ARAKI T, SASAKI Y, MILBRANDT J: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science (2004) 305(5686):1010-1013.
  • HALLOWS WC, LEE S, DENU JM: Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA (2006) 103(27):10230-10235.
  • BRUNET A, SWEENEY LB, STURGILL JF et al.: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (2004) 303(5666):2011-2015.
  • YEUNG F, HOBERG JE, RAMSEY CS et al.: Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. (2004) 23(12):2369-2380.
  • LANSBURY PT, LASHUEL HA: A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature (2006) 443(7113):774-779.
  • BODNER RA, HOUSMAN DE, KAZANTSEV AG: New directions for neurodegenerative disease therapy: using chemical compounds to boost the formation of mutant protein inclusions. Cell Cycle (2006) 5(14):1477-1480.
  • BODNER RA, OUTEIRO TF, ALTMANN S et al.: Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington's and Parkinson's diseases. Proc. Natl. Acad. Sci. USA (2006) 103(11):4246-4251.
  • KAWAGUCHI Y, KOVACS JJ, MCLAURIN A, VANCE JM, ITO A, YAO TP: The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell (2003) 115(6):727-738.
  • ZHANG Y, LI N, CARON C et al.: HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. (2003) 22(5):1168-1179.
  • IWATA A, RILEY BE, JOHNSTON JA, KOPITO RR: HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. (2005) 280(48):40282-40292.
  • SUZUKI T, KOUKETSU A, ITOH Y et al.: Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate. J. Med. Chem. (2006) 49(16):4809-4812.
  • MAI A, MASSA S, PEZZI R et al.: Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J. Med. Chem. (2005) 48(9):3344-3353.
  • NORTH BJ, MARSHALL BL, BORRA MT, DENU JM, VERDIN E: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell. (2003) 11(2):437-444.
  • SOUTHWOOD CM, PEPPI M, DRYDEN S, TAINSKY MA, GOW A: Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. (2006) (ahead of print).
  • KARPUJ MV, BECHER MW, SPRINGER JE et al.: Prolonged survival and decreased abnormal movements in transgenic model of Huntington’s disease, with administration of the transglutaminase inhibitor cystamine. Nat. Med. (2002) 8(2):143-149.
  • DEDEOGLU A, KUBILUS JK, JEITNER TM et al.: Therapeutic effects of cystamine in a murine model of Huntington's disease. J. Neurosci. (2002) 22(20):8942-8950.
  • JUNN E, RONCHETTI RD, QUEZADO MM, KIM SY, MOURADIAN MM: Tissue transglutaminase-induced aggregation of α-synuclein: implications for Lewy body formation in Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA (2003) 100(4):2047-2052.
  • VAN RAAMSDONK JM, PEARSON J, BAILEY CD et al.: Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington’s disease. J. Neurochem. (2005) 95(1):210-220.
  • BAILEY CD, JOHNSON GV: The protective effects of cystamine in the R6/2 Huntington's disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol. Aging. (2006) 27(6):871-879.
  • MAO Z, CHOO YS, LESORT M: Cystamine and cysteamine prevent 3-NP-induced mitochondrial depolarization of Huntington's disease knock-in striatal cells. Eur. J. Neurosci. (2006) 23(7):1701-1710.
  • BORRELL-PAGES M, CANALS JM, CORDELIERES FP et al.: Cystamine and cysteamine increase brain levels of BDNF in Huntington’s disease via HSJ1b and transglutaminase. J. Clin. Invest. (2006) 116(5):1410-1424.
  • TREMBLAY ME, SAINT-PIERRE M, BOURHIS E, LEVESQUE D, ROUILLARD C, CICCHETTI F: Neuroprotective effects of cystamine in aged parkinsonian mice. Neurobiol. Aging (2006) 27(6):862-870.
  • DUBINSKY R, GRAY C: CYTE-I-HD: Phase I dose finding and tolerability study of cysteamine (Cystagon) in Huntington's disease. Mov. Disord. (2006) 21(4):530-533.
  • GRAHAM RK, DENG Y, SLOW EJ et al.: Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell (2006) 125(6):1179-1191.
  • SAILOR KA, MING GL, SONG H: Neurogenesis as a potential therapeutic strategy for neurodegenerative diseases. Expert. Opin. Biol. Ther. (2006) 6(9):879-890.
  • BOWER JH, MARAGANORE DM, PETERSON BJ, AHLSKOG JE, ROCCA WA: Immunologic diseases, anti-inflammatory drugs, and Parkinson disease: a case-control study. Neurology (2006) 67(3):494-496.
  • CROISIER E, MORAN LB, DEXTER DT, PEARCE RK, GRAEBER MB: Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J. Neuroinflammation (2005) 2:14.
  • FAHRIG T, GERLACH I, HORVATH E: A synthetic derivative of the natural product rocaglaol is a potent inhibitor of cytokine-mediated signaling and shows neuroprotective activity in vitro and in animal models of Parkinson's disease and traumatic brain injury. Mol. Pharmacol. (2005) 67(5):1544-1555.
  • LUND S, PORZGEN P, MORTENSEN AL et al.: Inhibition of microglial inflammation by the MLK inhibitor CEP-1347. Neurochem. (2005) 92(6):1439-1451.
  • PIERRI M, VAUDANO E, SAGER T, ENGLUND U: KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology (2005) 48(4):517-524.
  • KURKOWSKA-JASTRZEBSKA I, LITWIN T et al.: Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease. Int. Immunopharmacol. (2004) 4(10-11):1307-1318.
  • KLIVENYI P, GARDIAN G, CALINGASAN NY, YANG L, BEAL MF: Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J. Mol. Neurosci. (2003) 21(3):191-198.
  • VIJITRUTH R, LIU M, CHOI DY, NGUYEN XV, HUNTER RL, BING G: Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease. J. Neuroinflammation. (2006) 3:6.
  • HOCKLY E, RICHON VM, WOODMAN B et al.: Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA (2003) 100(4):2041-2046.
  • FERRANTE RJ, KUBILUS JK, LEE J et al.: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. (2003) 23(28):9418-9427.
  • GARDIAN G, BROWNE SE, CHOI DK et al.: Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J. Biol. Chem. (2005) 280(1):556-556
  • SUZUKI T, ANDO T, TSUCHIYA K et al.: Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J. Med. Chem. (1999) 42(15):3001-3003.
  • REMISZEWSKI SW, SAMBUCETTI LC, BAIR KW et al.: N-hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: discovery of (2E)-N-hydroxy-3-[4- [[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]phenyl]-2-propenamide (NVP-LAQ824). J. Med. Chem. (2003) 46(21):4609-4624.
  • SIMONINI MV, CAMARGO LM, DONG E, MALOKU E, VELDIC M, COSTA E et al.: The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc. Natl. Acad. Sci. USA (2006) 103(5):1587-1592.
  • GARDIAN G, YANG L, CLEREN C, CALINGASAN NY, KLIVENYI P, BEAL MF: Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromolecular Med. (2004) 5(3):235-241.
  • KONTOPOULOS E, PARVIN JD, FEANY MB: α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. (2006) 15(20):3012-3023.
  • CUI L, JEONG H, BOROVECKI F, PARKHURST CN, TANESE N, KRAINC D: Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell (2006) 127(1):59-69.
  • WEYDT P, PINEDA VV, TORRENCE AE et al.: Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metab. (2006) (ahead of print).
  • ST-PIERRE J, DRORI S, ULDRY M et al.: Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. (2006) 127(2):397-408.

Patents

  • JAPAN SCIENCE & TECH. CORP.: US2004092012 (2004).
  • RELIANCE LIFE SCIENCES PVT LTD: US2006211109 (2006).
  • NEURO THERAPEUTICS AB: US2006233771 (2006).
  • BIOGEN IDEC., INC.; UNIV. YALE: CA2555018 (2005).
  • JAPAN SCIENCE & TECH AGENCY: CA2526893 (2004).
  • UNIV. MASSACHUSETTS: US2005256072 (2005).
  • DAVIDSON BL; HARPER S: US2005255086 (2005).
  • UNIV. IOWA RES. FOUND.; DAVIDSON BL; HARPER S: WO2006083800 (2006).
  • SIRNA THERAPEUTICS, INC.: US2005277133 (2005).
  • MEDTRONIC, INC.; KAEMMERER WF: WO2005116212 (2005).
  • TRUSTEES OF THE UNIVERSITY OF ALABAMA FOR AND ON BEHALF OF THE UNIVERSITY OF ALABAMA; CALDWELL GA: WO2006091964 (2006).
  • UNIV. CHICAGO: US2006147902 (2006)
  • UNIV. WASHINGTON: US2006084072 (2006).
  • NEWRON PHARM. SPA: CA2524593 (2004).
  • NEWRON PHARM. SPA: US2006116329 (2006).
  • AVICENA GROUP, INC.; GEN. HOSPITAL CORP..: CA2507753 (1996).
  • GEN. HOSPITAL CORP.: US2006128671 (2006).
  • AGOURON PHARMA.: US6495541 (2002).
  • US DEPT OF VETERANS AFFAIRS: US2006078549 (2006).
  • UNIV. BRIGHAM YOUNG; ANDRUS MB: US2005287597 (2005).
  • UNIV. BRIGHAM YOUNG; ANDRUS MB: WO2005069998 (2005).
  • HARVARD COLLEGE; SINCLAIR DA: WO2006068656 (2006).
  • BIOMOL. INTERNAT. LP; HARVARD COLLEGE: CA2529510 (2005).
  • UNIV. WASHINGTON; MILBRANDT J: WO2006001982 (2006).
  • HARVARD COLLEGE; SINCLAIR D: WO2006096780 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.: US2006229265 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094248 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094246 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094237 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094236 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094235 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094233 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094210 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006094209 (2006).
  • SIRTRIS PHARMACEUTICALS, INC.; MILBURN M: WO2006078941 (2006).
  • STEIN RL; CASE A: US2006183759 (2006).
  • SECRETARY DEPT OF HEALTH: US2006211624 (2006).
  • VERTEX PHARMA: CA20042526749 (2004).
  • SUN CHLORELLA CORP.: JP20030321645 (2005).
  • LG LIFE SCIENCES LTD: WO2005021516 (2005).
  • PHARMACIA CORP.: WO2003US11517 (2003).
  • PHARMACIA CORP.: WO2003US11269 (2003)
  • KNOELL HANS FORSCHUNG EV; KREACTIV GMBH: DE200410020081 (2005).
  • KNOELL HANS FORSCHUNG EV; UNIV SCHILLER JENA; KREACTIV GMBH: DE20021000490 (2003).
  • MERCK & AMP; FROSST CANADA & AMP; CO: EA20020000702 (2004).
  • SLOAN KETTERING INST. CANCER; RICHON VM: WO03032921 (2003).
  • US DEPT OF VETERANS AFFAIRS: US2006069157 (2006).
  • DANA FARBER CANCER INST., INC.; LIN J: WO2006026785 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.