754
Views
9
CrossRef citations to date
0
Altmetric
Review

Pharmacophores and biological activities of severe acute respiratory syndrome viral protease inhibitors

&
Pages 533-546 | Published online: 02 May 2007

Bibliography

  • GUAN Y, ZHENG BJ, HE YQ et al.: Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science (2003) 302:276-278.
  • TSANG KW, HO PL, OOI GC et al.: A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Eng. J. Med. (2003) 348:1977-1985.
  • POUTANEN SM, LOW DE, HENRY B et al.: Identification of severe acute respiratory syndrome in Canada. N. Eng. J. Med. (2003) 348:1995-2005.
  • KSIAZEK TG, ERDMAN D, GOLDSMITH CS et al.: A novel coronavirus associated with severe acute respiratory syndrome. N. Eng. J. Med. (2003) 348:1953-1966.
  • DROSTEN C, GUNTHER S, PREISER W et al.: Identification of a novel coronavirus in patients with severe acute respiratory syndrome. J. Med. (2003) 348:1967-1976.
  • PEIRIS JS, KUEY KY, OSTERHAUS KD, STOHR K: The severe acute respiratory syndrome. N. Eng. J. Med. (2003) 349:2431-2441.
  • HOLMES KV: SARS-associated coronavirus. N. Eng. J. Med. (2003) 348:1948-1951.
  • SIDDELL SG, ZIEBUHR J, SNIJDER EJ: Coronaviruses, toroviruses, and arteriviruses. In: Topley and Wilsons Micerbiology and Microbial infections. (Eds). Mahy BW, Ter Meulen V, Hodder Arnold, London (2005) 1(10):823-856.
  • KUIKEN T, FOUCHIER RA, SCHUTTEN M et al.: Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet (2003) 362:263-270.
  • MATTHEWS DA, SMITH WW, FERRE RA et al.: Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell (1994) 77(5):761-771.
  • WHIERELL G: AG-7088 Pfizer. Curr. Opin. Investig Drugs. (2000) 1(3):297-302.
  • FAN K, WEI P, FENG Q et al.: Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J. Biol. Chem. (2004) 279:1637-1642.
  • KUO CJ, CHI YH, HSU JT-A et al.: Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem. Biophys. Res. Commun. (2004) 318:862-867.
  • BLANCHARD JE, ELOWE NH, HUITEMA C et al.: High-throughput screening identifies inhibitors of the SARS coronavirus main protease. Chem. Biol. (2004) 11:1445-1453.
  • GRAZIANO V, MCGRATH WJ, DEGUCCIO AM et al.: Enzymatic activity of the SARS coronavirus main protease. FEBS Lett. (2006) 580:2577-2583.
  • HUANG C, WEI P, FAN K et al.: 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Biochemistry (2004) 43:4568-4574.
  • ANAND K, ZIEBUHR J, WADHWANI P et al.: Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science (2003) 300:1763-1767.
  • ANARD K, PALM GJ, MESTERS JR et al.: Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra-helical domain. EMBO J. (2002) 21:3213-3224.
  • YANG H, YANG M, DING Y et al.: The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA. (2003) 100:13190-13195.
  • HSU MF, KUO CJ, CHANG KT et al.: Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem. (2005) 280:31257-31266.
  • SHI JH, WEI Z, SONG JX: Dissection study on the SARS 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target of highly specific protease inhibitors. J. Biol. Chem. (2004) 279:24765-24773.
  • HSU WC, CHANG HC, CHOU CY et al.: Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease. J. Biol. Chem. (2005) 280:22741-22748.
  • BARRILA J, USMAN B, ERNESTO F: Long-range cooperative interactions modulate dimerization in SARS 3CLpro. Biochemistry (2006) 45:14908-14916.
  • GRAZIANO V, MCGRATH WJ, YANG L, MANGEL WF: SARS CoV main proteinase: the monomer–dimer equilibrium dissociation constant. Biochemistry (2006) 45:14632-14641.
  • WEI P, FAN K, CHEN H et al.: The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem. Biophys. Res. Commun. (2006) 339:865-872.
  • LIANG PH: Characterization and inhibition of SARS-coronavirus main protease. Curr. Top. Med. Chem. (2006) 6:361-376.
  • WU CY, JAN JT, MA SH et al.: Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA. (2004) 101:10012-10017.
  • BRIK A, LIN YC, ELDER JH, WONG CH: A quick diversity-oriented amide-forming reaction to optimize P-subsite residues of HIV protease inhibitors. Chem. Biol. (2002) 9:891-896.
  • CHAN KS, LAI ST, CHU CM et al.: Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J. (2003) 9:399-406.
  • KAO RY, TSUI WHW, LEE TSW et al.: Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem. Biol. (2004) 11:1293-1299.
  • KAO RY, TO AP, NG LW et al.: Characterization of SARS-CoV main protease and identification of biologically active small molecule inhibitors using a continuous fluorescence-based assay. FEBS Lett. (2004) 576:325-330.
  • HSU JTA, KUO CJ, HSIH HP et al.: Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett. (2004) 574:116-120.
  • ROWE RC, SHESKEY PJ, WELLER PJ: Handbook of Pharmaceutical Excipients. (Ed.). Pharmaceutical Press (2003) 4.
  • LIU YC, HUANG V, CHAO TC et al.: Screening of drugs by FRET analysis identifies inhibitors of SARS-CoV 3CL protease. Biochem. Biophys. Res. Commun. (2005) 333:194-199.
  • CHEN CN, LIN CPC, HUANG KK et al.: Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3-digallate (TF3). ECAM (2005) 2:209-215.
  • LEUNG LK, SU Y, CHEN R et al.: Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. (2001) 131:2248-2251.
  • HAMILL P, HUDSON D, RICHARD Y et al.: Development of a red-shifted fluorescence-based assay for SARS-coronavirus 3CL protease: identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugate. Biol. Chem. (2006) 387:1063-1074
  • DRAGOVICH PS, PRINS TJ, ZHOU R et al.: Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 8. Pharmacological optimization of orally bioavailable 2-pyridone-containing peptidomimetics. J. Med. Chem. (1999) 42:1213-1224.
  • PATICK AK, BINFORD SL, BROTHERS MA et al.: In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother. (1999) 43:2444-2450.
  • MATTHEWS DA, DRAGOVICH PS, WEBBER SE et al.: Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci. USA (1999) 96:11000-11007.
  • YANG H, XIE W, XUE X et al.: Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. (2005) 3:1742-1752.
  • YANG S, CHEN SJ, HSU MF et al.: Synthesis, crystal structure, structure–activity relationship, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J. Med. Chem. (2006) 49:4971-4980.
  • SHIE JJ, FANG JM, KUO TH et al.: Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic α,β-unsaturated esters. Bioorg. Med. Chem. (2005) 13:5240-5252.
  • SHIE JJ, FANG JM, KUO CJ et al.: Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3CL protease. J. Med. Chem. (2005) 48:4469-4473.
  • JAIN RP, PETTERSSON HI, ZHANG J et al.: Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro. J. Med. Chem. (2004) 47:6113-6116.
  • ZHANG HZ, ZHANG H, KEMNITZER W et al.: Design and synthesis of dipeptidyl glutaminyl fluoromethyl ketones as potent severe acute respiratory syndrome coronovirus (SARS-CoV) inhibitors. J. Med. Chem. (2006) 49:1198-1201.
  • MARTINA E, STIEFL N, DEGEL B et al.: Screening of electrophilic compounds yields an aziridinyl peptide as new active-site directed SARS-CoV main protease inhibitor. Bioorg. Med. Chem. Lett. (2005) 15:5365-5369.
  • LEE TW, CHERNEY MM, HUITEMA C et al.: Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide. J. Mol. Biol. (2005) 353:1137-1151.
  • WEBBER SE, TIKHE J, WORLAND ST et al.: Design, synthesis, and evaluation of nonpeptidic inhibitors of human rhinovirus 3C protease. J. Med. Chem. (1996) 39:5072-5082.
  • CHEN LP, WANG YC, LIN YW et al.: Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg. Med. Chem. Lett. (2005) 15:3058-3062.
  • ZHOU L, LIU Y, ZHANG W et al.: Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. J. Med. Chem. (2006) 49:3440-3443.
  • LOCKWOOD TD: Cys-His proteases are among the wired proteins of the cell. Arch. Biochem. Biophys. (2004) 432:12-24.
  • LIU X, LIANG J, GHAZI AM, FREY TK: Characterization of the zinc binding activity of the rubella virus non-structural protease. J. Virol. (2000) 74:5949-5956.
  • PETERSEN JF, CHERNEY MM, LIEBIG HD et al.: The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. EMBO J. (1999) 18:5463-5475.
  • BREWER GJ, JOHNSON VD, DICK RD et al.: Treatment of Wilson's disease with zinc. XVII: treatment during pregnancy. Hepatology (2000) 31:364-370.
  • MOSSAD SB: Effect of zincum gluconicum nasal gel on the duration and symptom severity of the common cold in otherwise healthy adults. Q. J. Med. (2003) 96:35-43.
  • KORANT BD, KAUER JC, BUTTERWORTH BE: Zinc ions inhibit replication of rhinoviruses. Nature (1974) 248:588-590.
  • MERLUZZI VJ, CIPRIANO D, MCNEIL D et al.: Evaluation of zinc complexes on the replication of rhinovirus 2 in vitro. Res. Commun. Chem. Pathol. Pharmacol. (1989) 66:425-440.
  • BACHA U, BARRILA J, VELZQUEZ-CAMPY A et al.: Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry (2004) 43:4906-4912.
  • KAEPPLER U, STIEFL N, SCHILLER M et al.: A new lead for nonpeptidic active-site-directed inhibitors of the severe acute respiratory syndrome coronavirus main protease discovered by a combination of screening and docking methods. J. Med. Chem. (2005) 3:6832-42.
  • WU CY, KING KY, KUO CJ et al.: Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease. Chem. Biol. (2006) 13:261-268.
  • LU IL, MAHINDROO N, LIANG PH et al.: Structure-based drug design and structural biology study of novel non-peptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J. Med. Chem. (2006) 49:5154-5161.
  • TSAI KC, CHEN SY, LIANG PH et al.: Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies. J. Med. Chem. (2006) 49:3485-3495.
  • CHEN L, GUI C, LUO X et al.: Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J. Virol. (2005) 79:7095-7103.
  • JENWITHEESUK E, SAMUDRALA R: Identifying inhibitors of the SARS coronavirus proteinase. Bioorg. Med. Chem. Lett. (2003) 13:3989-3992.
  • CHOU KC, WEI DQ, ZHONG WZ: Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun. (2003) 308:148-151.
  • XIONG B, GUI CS, XU XY et al.: A 3D model of SARS-CoV 3CL proteinase and its inhibitors design by virtual screening. Acta. Pharmacol. Sin. (2003) 24:497-501.
  • ZHANG XW, YAP YL: Old drug as lead compounds for a new disease? Binding analysis of SARS coronavirus main protease with HIV, psychotic and parasite drugs. Bioorgan. Med. Chem. (2004) 12:2517-2521.
  • TONEY JH, NAVAS-MARTIN S. WEISS SR, KOELLER A et al.: Sabadinine: a potential non-peptide anti-severe acute respiratory syndrome agent identified using structure-aided design. J. Med. Chem. (2004) 47:1079-1080.
  • RAJNARAYANAN RV, DAKSHANAMURTHY S, PATTABIRAMAN N et al.: Teaching old drugs to kill new bugs: structure-based discovery of anti-SARS drugs. Biochem. Biophys, Res. Commun. (2004) 321:370-378.
  • ZHANG XW, YAP YL, ALTMEYER RM: Generation of predictive pharmacophore model for SARS-coronavirus main proteinase. Eur. J. Med. Chem. (2005) 40:57-62.
  • DU Q, WANG S, WEI D, SIROIS S, CHOU KC: Molecular modeling and chemical modification for finding peptide inhibitor against severe acute respiratory syndrome coronavirus main proteinase. Anal. Biochem. (2005) 337:262-270.

Patents

  • AGOURON PHARMACEUTICALS, INC.: US20060014821 (2006).
  • PFIZER, INC.: WO2006061714 (2006).
  • TSINGHUA UNIVERSITY, SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, CHINESE ACADEMY OF SCIENCE: WO2006042478 (2006).
  • AGOURON PHARMACEUTICALS, INC.: US20040235952 (2004).
  • CAI SX, KEMNITZER WE, ZHANG H ET AL.: WO2004101742 (2004).
  • FLUCRUM PHARMACEUTICALS, INC.: US20050267071 (2005).
  • BALZARINI J, PREOBRAZHENSKAYA M, CLERCQ ED: US20050250677 (2005).
  • WU SY, HSIEH HP, HSU TA ET AL.: US20060019967 (2006).
  • CHIRON CO.: US20060257852 (2006).
  • SHANGHAI INSTITUTE OF METERIA MEDICA CHINESE ACADEMY OF SCIENCE, SHANGHAI LEAD DISCOVERY PHARMACEUTICALS LIMITED COMPANY: US20060142383 (2006).
  • SHANGHAI INSTITUTE OF METERIA MEDICA CHINESE ACADEMY OF SCIENCE: CN031290671 (2006).
  • UNIVERSITY OF BEIJING: CN03146047 (2006).
  • SHANGHAI INSTITUTE OF METERIA MEDICA, CHINESE ACADEMY OF SCIENCE: CN200410018418 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.