288
Views
34
CrossRef citations to date
0
Altmetric
Review

Recent progress in the discovery of Akt inhibitors as anticancer agents

Pages 1077-1130 | Published online: 01 Oct 2007

Bibliography

  • ARSLAN MA, KUTUK O, BASAGA H: Protein kinases as drug targets in cancer. Curr. Cancer Drug Targets (2006) 6:623-634.
  • OVERINGTON JP, AL-LAZIKANI B, HOPKINS AL: How many drug targets are there? Nat. Rev. Drug Discov. (2006) 5:993-996.
  • FAIVRE S, DJELLOUL S, RAYMOND E: New paradigms in anticancer therapy: targeting multiples signaling pathways with kinase inhibitors. Semin. Oncol. (2006) 33:407-420.
  • SHARKEY RM, GOLDENBERG DM: Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J. Clin. (2006) 56:226-243.
  • BASELGA J: Targeting tyrosine kinases in cancer: the second wave. Science (2006) 312:1175-1178.
  • CANTLEY LC: The role of phosphoinositide 3-kinase in human disease. Harvey Lect. (2004) 100:103-122.
  • BELLACOSA A, KUMAR CC, DI CRISTOFANO A et al.: Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv. Cancer Res. (2005) 94:29-86.
  • HANADA M, FENG J, HEMMINGS BA: Structure, regulation and function of PKB/AKT – a major therapeutic target. Biochim. Biophys. Acta (2004) 1697:3-16.
  • MITSIADES CS, MITSIADES N, KOUTSILIERIS M: The Akt pathway: molecular targets for anti-cancer drug development. Curr. Cancer Drug Targets (2004) 4:235-256.
  • BELLACOSA A, FRANKE TF, GONZALEZ-PORTAL ME et al.: Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene (1993) 8:745-754.
  • HANKS S, HUNTER T: The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. (1995) 9:576-596.
  • KUMAR CC, DIAO R, YIN Z et al.: Expression, purification, characterization and homology modeling of active Akt/PKB, a key enzyme involved in cell survival signaling. Biochim. Biophys. Acta (2001) 1526:257-268.
  • LI Q, ZHU GD: Targeting serine/threonine protein kinase B/Akt and cell-cycle checkpoint kinases for treating cancer. Curr. Top. Med. Chem. (2002) 2:939-971.
  • YANG J, CRON P, THOMPSON V et al.: Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol. Cell ((2002) 9:1227-1240.
  • MILBURN CC, DEAK M, KELLY SM et al.: Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem. J. (2003) 375:531-538.
  • THOMAS CC, DEAK M, ALESSI DR et al.: High-resolution structure of the pleckstrin homology domain of protein kinase B/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr. Biol. (2002) 12:1256-1262.
  • MILLS SJ, KOMANDER D, TRUSSELLE MN et al.: Novel inositol phospholipid headgroup surrogate crystallized in the pleckstrin homology domain of protein kinase Ba. ACS Chem. Biol. (2007) 2:242-246.
  • YANG J, CRON P, GOOD VM et al.: Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat. Struct. Biol. (2002) 9:940-944.
  • HUANG X, BEGLEY M, MORGENSTERN KA et al.: Crystal structure of an inactive Akt2 kinase domain. Structure (2003) 11:21-30.
  • GASSEL M, BREITENLECHNER CB, RUGER P et al.: Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT). J. Mol. Biol. (2003) 329:1021-1034.
  • BREITENLECHNER CB, WEGGE T, BERILLON L et al.: Structure-based optimization of novel azepane derivatives as PKB inhibitors. J. Med. Chem. (2004) 47:1375-1390.
  • KUMAR CC, MADISON V: AKT crystal structure and AKT-specific inhibitors. Oncogene (2005) 24:7493-7501.
  • DAVIES TG, VERDONK ML, GRAHAM B et al.: A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J. Mol. Biol. (2007) 367:882-894.
  • BIONDI RM, CHEUNG PC, CASAMAYOR A et al.: Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. (2000) 19:979-988.
  • PEKARSKY Y, KOVAL A, HALLAS C et al.: Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc. Natl. Acad. Sci. USA (2000) 97:3028-3033.
  • SATO S, FUJITA N, TSURUO T: Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA (2000) 97:10832-10837.
  • MITSUUCHI Y, JOHNSON SW, SONODA G et al.: Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene (1999) 18:4891-4898.
  • MAIRA SM, GALETIC I, BRAZIL DP et al.: Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science (2001) 294:374-380.
  • KOH H, LEE KH, KIM D et al.: Inhibition of Akt and its anti-apoptotic activities by TNF-induced protein kinase C-related kinase 2 (PRK2) cleavage. J. Biol. Chem. (2000) 275:34451-34458.
  • DU K, TSICHLIS PN: Regulation of the Akt kinase by interacting proteins. Oncogene (2005) 24:7401-7409.
  • BRAZIL DP, PARK J, HEMMINGS BA: PKB binding proteins. Getting in on the Akt. Cell ((2002) 111:293-303.
  • WOODGETT JR: Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. (2005) 17:150-157.
  • LESLIE N, BIONDI RM, ALESSI DR: Phosphoinositide regulated kinases and phosphoinositide phosphatases. Chem. Rev. (2001) 101:2365-2380.
  • CHAN TO, TSICHLIS PN: PDK2: a complex tail in one Akt. Sci. STKE (2001) 2001:PE1.
  • SARBASSOV DD, GUERTIN DA, ALI SM et al.: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (2005) 307:1098-1101.
  • NAKATANI K, THOMPSON DA, BARTHEL A et al.: Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J. Biol. Chem. (1999) 274:21528-21532.
  • DEL PESO L, GONZALEZ-GARCIA M, PAGE C et al.: Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science (1997) 278:687-689.
  • DATTA SR, DUDEK H, TAO X et al.: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell ((1997) 91:231-241.
  • CARDONE MH, ROY N, STENNICKE HR et al.: Regulation of cell death protease caspase-9 by phosphorylation. Science (1998) 282:1318-1321.
  • KIM AH, KHURSIGARA G, SUN X et al.: Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell Biol. (2001) 21:893-901.
  • GOSWAMI A, RANGANATHAN P, RANGNEKAR VM: The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Cancer Res. (2006) 66:2889-2892.
  • ASHCROFT M, LUDWIG RL, WOODS DB et al.: Phosphorylation of HDM2 by Akt. Oncogene (2002) 21:1955-1962.
  • OZES ON, MAYO LD, GUSTIN JA et al.: NF-κB activation by TNF requires the Akt serine-threonine kinase. Nature (1999) 401:82-85.
  • KANE LP, MOLLENAUER MN, XU Z et al.: Akt-dependent phosphorylation specifically regulates Cot induction of NF-κB-dependent transcription. Mol. Cell Biol. (2002) 22:5962-5974.
  • TRENCIA A, PERFETTI A, CASSESE A et al.: Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol. Cell Biol. (2003) 23:4511-4521.
  • PEKARSKY Y, HALLAS C, PALAMARCHUK A et al.: Akt phosphorylates and regulates the orphan nuclear receptor Nur77. Proc. Natl. Acad. Sci. USA (2001) 98:3690-3694.
  • LIN HK, YEH S, KANG HY et al.: Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA (2001) 98:7200-7205.
  • BASU S, TOTTY NF, IRWIN MS et al.: Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell ((2003) 11:11-23.
  • ZHOU BP, LIAO Y, XIA W et al.: Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat. Cell Biol. (2001) 3:245-252.
  • SHIM I, YAKES FM, ROJO F et al.: PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat. Med. (2002) 8:1145-1152.
  • VIGLIETTO G, MOTTI ML, BRUNI P et al.: Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat. Med. (2002) 8:1136-1144.
  • LIANG J, ZUBOVITZ J, PETROCELLI T et al.: PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat. Med. (2002) 8:1153-1160.
  • ALTIOK S, BATT D, ALTIOK N et al.: Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-kinase/AKT in breast cancer cells. J. Biol. Chem. (1999) 274:32274-32278.
  • ASADA M, YAMADA T, ICHIJO H et al.: Apoptosis inhibitory activity of cytoplasmic p21Cip1/WAF1 in monocyte differentiation. EMBO J. (1999) 18:1223-1234.
  • DIEHL JA, CHENG M, ROUSSEL MF et al.: Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. (1998) 12:3499-3511.
  • OKUMURA E, FUKUHARA T, YOSHIDA H et al.: Akt inhibits Myt1 in the signaling pathway that leads to meiotic G2/M-phase transition. Nat. Cell Biol. (2002) 4:111-116.
  • ZIMMERMANN S, MOELLING K: Phosphorylation and regulation of Raf by Akt (protein kinase B). Science (1999) 286:1741-1744.
  • ROMMEL C, CLARKE BA, ZIMMERMANN S et al.: Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science (1999) 286:1738-1741.
  • DIMMELER S, ZEIHER AM: Akt takes center stage in angiogenesis signaling. Circ. Res. (2000) 86:4-5.
  • KANG SS, KWON T, KWON DY et al.: Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J. Biol. Chem. (1999) 274:13085-13090.
  • BHASKAR PT, HAY N: The two TORCs and Akt. Dev. Cell (2007) 12:487-502.
  • SCOTT PH, BRUNN GJ, KOHN AD et al.: Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl. Acad. Sci. USA (1998) 95:7772-7777.
  • LI Y, CORRADETTI MN, INOKI K et al.: TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem. Sci. (2004) 58:5667-5672.
  • KOVACINA KS, PARK GY, BAE SS et al.: Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. (2003) 278:10189-10194.
  • SANCAK Y, THOREEN CC, PETERSON TR et al.: PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell(2007) 25:903-915.
  • HAAR EV, LEE SI, BANDHAKAVI S et al.: Insulin signaling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. (2007) 9:316-323.
  • OKADA T, KAWANO Y, SKAKIBARA T et al.: Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Mol. Cell Biol. (1994) 14:4902-4911.
  • ALI A, KLAUS P, HOEFLICH P et al.: Glycogen synthase kinase-3: properties, functions and regulation. Chem. Rev. (2001) 101:2527-2540.
  • CORSS DA, ALESSI DR, COHEN P et al.: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature (1995) 378:785-789.
  • KOHN AD, SUMMERS SA, BIRNBAUM MJ et al.: Expression of a constitutively active Akt Ser/Thr kinase in 3Ts-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. (1996) 271:31372-31378.
  • DEPREZ J, VERTOMMEN D, ALESSI DR et al.: Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. (1997) 272:17269-17275.
  • KITAMURA T, KITAMURA Y, KURODA S et al.: Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell Biol. (1999) 19:6286-6296.
  • AHMAD F, CONG LN, STENSON HOLST L et al.: Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells. J. Immunol. (2000) 164:4678-4688.
  • BELLACOSA A, DE FEO D, GODWIN AK et al.: Molecular alterations of the Akt2 oncogene in ovarian and breast carcinomas. Int. J. Cancer (1995) 64:280-285.
  • BROGNARD J, CLARK AS, NI Y et al.: Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. (2001) 61:3986-3997.
  • NAKATANI K, THOMPSON DA, BARTHEL A et al.: Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer lines. J. Biol. Chem. (1999) 274:21528-21532.
  • HUTCHINSON J, JIN J, CARDIFF RD et al.: Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol. Cell Biol. (2001) 21:2203-2212.
  • MENDE I, MALSTROM S, TSICHLIS PN et al.: Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene (2001) 20:4419-4423.
  • HSU JH, SHI Y, HU L et al.: Role of the AKT kinase in expansion of multiple myeloma clones: effects on cytokine-dependent proliferative and survival responses. Oncogene (2002) 21:1391-1400.
  • PAGE C, LIN HJ, JIN Y et al.: Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res (2000) 20:407-416.
  • SKEEN JE, BHASKAR PT, CHEN CC et al.: Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell ((2006) 10:269-280.
  • SCHWERTFEGER KL, RICHERT MM, ANDERSON SM: Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol. (2001) 15:867-881.
  • ACKLER S, AHMAD S, TOBIAS C et al.: Delayed mammary gland involution in MMTV-AKT1 transgenic mice. Mol. Endocrinol. (2001) 15:867-881.
  • MALSTROM S, TILI E, KAPPES D et al.: Tumor induction by an Lck-MyrAkt transgene is delayed by mechanisms controlling the size of the thymus. Proc. Natl. Acad. Sci. USA (2001) 98:14967-14972.
  • CHEN ML, XU PZ, PENG XD et al.: The deficiency of Akt1 is sufficient to suppress tumor development in Pten±mice. Genes Dev. (2006) 20:1569-1574.
  • LIU X, SHI Y, HAN EK et al.: Downregulation of Akt1 inhibits anchorage-independent cell growth and induces apoptosis in cancer cells. Neoplasia (2001) 3:278-286.
  • CHENG JQ, RUGGERI B, KLEIN WM et al.: Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumourigenicity by antisense RNA. Proc. Natl. Acad. Sci USA (1996) 93:3636-3641.
  • BARNETT SF, BILODEAU MT:LINDSLEY CW: The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr. Top. Med. Chem. (2005) 5:109-125.
  • KIM D, CHENG GZ, LINDSLEY CW et al.: Targeting the phosphatidylinositol-3 kinase/Akt pathway for the treatment of cancer. Curr. Opin. Investig. Drugs (2005) 6:1250-1258.
  • CHENG JQ, LINDSLEY CW, CHENG GZ et al.: The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene (2005) 24:7482-7492.
  • GRANVILLE CA, MEMMOTT RM, GILLS JJ et al.: Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin. Cancer Res. (2006) 12:679-689.
  • GILLS JJ, DENNIS PA: The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt. Expert Opin. Investig. Drugs (2004) 13:787-797.
  • REDAELLI C, GRANUCCI F, DE GIOIA L et al.: Synthesis and biological activity of Akt/PI3K inhibitors . Mini Rev. Med. Chem. (2006) 6:1127-1136.
  • RÜEGG UT, BURGESS GM: Staurosporine, K0252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol. Sci. (1989) 10:218-220.
  • LI Q, LI T, ZHU GD et al.: Discovery of trans-3,4′-bispyridinylethylenes as potent and novel inhibitors of protein kinase B (PKB/Akt) for the treatment of cancer: synthesis and biological evaluation. Bioorg. Med. Chem. Lett. (2006) 16:1679-1685.
  • TUREK TC, SMALL EC, BRYANT RW et al.: Development and validation of a competitive Akt serine/threonine kinase fluorescence polarization assay using a product-specific anti-phospho-serine antibody. Anal. Biochem. (2001) 299:45-53.
  • CHIJIWA T, MISHIMA A, HAGIWARA M et al.: Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. (1990) 265:5267-5272.
  • ENGH RA, GIROD A, KINZEL V et al.: Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. J. Biol. Chem. (1996) 271:26157-26164.
  • REUVENI H, LIVNAH N, GEIGER T et al.: Toward a PKB inhibitor: modification of a selective PKA inhibitor by rational design. Biochemistry (2002) 41:10304-10314.
  • ENKVIST E, LAVOGINA D, RAIDARU G et al.: Conjugation of adenosine and hexa-(D-arginine) leads to a nanomolar bisubstrate-analogue inhibitor of basophilic protein kinases. J. Med. Chem. (2006) 49:7150-7159.
  • COLLINS I, CALDWELL J, FONSECA T et al.: Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B. Bioorg. Med. Chem. (2006) 14:1255-1273.
  • GUSTAFSSON AB, BRUNTON LL: Differential and selective inhibition of protein kinase A and protein kinase C in intact cells by balanol congeners. Mol. Pharmacol. (1999) 56:377-382.
  • NARAYANA N, DILLER TC, KOIDE K et al.: Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase. Biochemistry (1999) 38:2367-2376.
  • AKAMINE P, MADHUSUDAN, BRUNTON LL et al.: Balanol analogues probe specificity determinants and the conformational malleability of the cyclic 3′,5′-adenosine monophosphate-dependent protein kinase catalytic subunit. Biochemistry (2004) 43:85-96.
  • BREITENLECHNER CB, FRIEBE WG, BRUNET E et al.: Design and crystal structures of protein kinase B-selective inhibitors in complex with protein kinase A and mutants. J. Med. Chem. (2005) 48:163-170.
  • LI Q, WOODS KW, THOMAS S et al.: Synthesis and structure-activity relationship of 3,4′-bispyridinylethylenes: discovery of a potent 3-isoquinolinylpyridine inhibitor of protein kinase B (PKB/Akt) for the treatment of cancer. Bioorg. Med. Chem. Lett. (2006) 16:2000-2007.
  • WOODS KW, FISCHER JP, CLAIBORNE A et al.: Synthesis and SAR of indazole-pyridine based protein kinase B/Akt inhibitors. Bioorg. Med. Chem. (2006) 14:6832-6846.
  • LUO Y, SHOEMAKER AR, LIU X et al.: Potent and selective inhibitors of Akt kinases slow the progress of tumours in vivo. Mol. Cancer Ther. (2005) 4:977-986.
  • SHI Y, LIU X, HAN EK et al.: Optimal classes of chemotherapeutic agents sensitized by specific small-molecule inhibitors of akt in vitro and in vivo. Neoplasia (2005) 7:992-1000.
  • MORGAN-LAPPE S, WOODS KW, LI Q et al.: RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene (2006) 25:1340-1348.
  • THOMAS SA, LI T, WOODS KW et al.: Identification of a novel 3,5-disubstituted pyridine as a potent, selective, and orally active inhibitor of Akt1 kinase. Bioorg. Med. Chem. Lett. (2006) 16:3740-3744.
  • ZHU GD, GONG J, CLAIBORNE A et al.: Isoquinoline–pyridine-based protein kinase B/Akt antagonists: SAR and in vivo antitumour activity. Bioorg. Med. Chem. Lett. (2006) 16:3150-3155.
  • ZHU GD, GANDHI VB, GONG J et al.: Discovery and SAR of oxindole-pyridine-based protein kinase B/Akt inhibitors for treating cancers. Bioorg. Med. Chem. Lett. (2006) 16:3424-3429.
  • ZHU GD, GONG J, GANDHI VB et al.: Design and synthesis of pyridine–pyrazolopyridine-based inhibitors of protein kinase B/Akt. Bioorg. Med. Chem. (2007) 15:2441-2452.
  • LIPPA B: Inhibitors of Akt activity. Expert Opin. Ther. Patents (2007) 17:577-581.
  • KUMAR R, RHODES N, KNICK VB et al.: GSK690693, a pan-Akt kinase inhibitor has potent anti-tumor activity and shows additive effect with lapatinib. Annual Meeting of American Association for Cancer Research. Los Angeles, USA (2007):(Abstract 279).
  • RHODES N, KNICK VB, MCCONNELL R et al.: GSK690693, a pan-Akt kinase inhibitor with potent pharmacodynamic and antitumor activity in vivo. Annual Meeting of American Association for Cancer Research. Los Angeles, USA (2007):(Abstract 277).
  • DONALD A, MCHARDY T, ROWLANDS MG et al.: Rapid evolution of 6-phenylpurine inhibitors of protein kinase B through structure-based design. J. Med. Chem. (2007) 50:2289-2292.
  • SAXTY G, WOODHEAD SJ, BERDINI V et al.: Identification of inhibitors of protein kinase B using fragment-based lead discovery. J. Med. Chem. (2007) 50:2293-2296.
  • LIN X, MURRAY JM, RICO AC et al.: Discovery of 2-pyrimidyl-5-amidothiophenes as potent inhibitors for AKT: synthesis and SAR studies. Bioorg. Med. Chem. Lett. (2006) 16:4163-4168.
  • THIMMAIAH KN, EASTON JB, GERMAIN GS et al.: Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling. J. Biol. Chem. (2005) 280:31924-31935.
  • MANDAL M, KIM S, YOUNES MN et al.: The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br. J. Cancer (2005) 92:1899-1905.
  • ZENG Z, SAMUDIO IJ, ZHANG W et al.: Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res. (2006) 66:3737-3746.
  • MANDAL M, YOUNES M, SWAN EA et al.: The Akt inhibitor KP372-1 inhibits proliferation and induces apoptosis and anoikis in squamous cell carcinoma of the head and neck. Oral Oncol. (2006) 42:430-439.
  • MANDAL M, YOUNES M, SWAN EA et al.: The Akt inhibitor KP372-1 inhibits proliferation and induces apoptosis and anoikis in squamous cell carcinoma of the head and neck. Oral Oncol. (2006) 42:430-439.
  • KOUL D, SHEN R, BERGH S et al.: Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol. Cancer Ther. (2006) 5:637-644.
  • BURNS S, TRAVERS J, COLLINS I et al.: Identification of small-molecule inhibitors of protein kinase B (PKB/AKT) in an AScreen™ high-throughput screen. J. Biomol. Screen. (2006) 11:822-827.
  • NAGAMATSU T, YAMASAKI H: General syntheses of 1-alkyltoxoflavin and 8-alkylfervenulin derivatives of biological significance by the regioselective alkylation of reumycin derivatives and the rates of transalkylation from 1-alkyltoxoflavins into nucleophiles. J. Chem. Soc. Perkin Trans. 1 (2001):130-137.
  • MIDDLETON T, LIM HB, MONTGOMERY D et al.: Azepteridine inhibitors of hepatitis C virus RND-dependent RNA polymerase. Lett. Drug Design. Dis. (2007) 4:1-8.
  • KO JH, YEON SW, RYU JS et al.: Synthesis and biological evaluation of 5-arylamino-6-chloro-1H-indazole4,7-diones as inhibitors of protein kinase B/Akt. Bioorg. Med. Chem. Lett. (2006) 16:6001-6005.
  • FORINO M, JUNG D, EASTON JB et al.: Virtual docking approaches to protein kinase B inhibition. J. Med. Chem. (2005) 48:2278-2281.
  • BARNETT SF, DEFEO-JONES D, FU S et al.: Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem. J. (2005) 385:399-408.
  • LINDSLEY CW, ZHAO Z, LEISTER WH et al.: Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg. Med. Chem. Lett. (2005) 15:761-764.
  • ZHAO Z, LEISTER WH, ROBINSON RG et al.: Discovery of 2,3,5-trisubstituted pyridine derivatives as potent Akt1 and Akt2 dual inhibitors. Bioorg. Med. Chem. Lett. (2005) 15:905-909.
  • DEFEO-JONES D, BARNETT SF, FU S et al.: Tumour cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol. Cancer Ther. (2005) 4:271-279.
  • LINDSLEY CW, BOGUSKY MJ, LEISTER WH et al.: Synthesis and biological evaluation of unnatural canthine alkaloids. Tetrahedron Lett. (2005) 46:2779-2782.
  • MANNINC G, WHYTE DB, MARTINEZ R et al.: The protein kinase complement of the human genome. Science (2002) 298:1912-1934.
  • LEMMON MA, FERGUSON KM, ABRAMS CS: Pleckstrin homology domains and the cytoskeleton. FEBS Lett. (2002) 513:71-76.
  • KOZIKOWSKI AP, KIDDLE JJ, FREW T: Synthesis and biology of 1D-3-dexoyphosphosphatidylinositol: a putative antimetabolite of phosphatidylinositol-3-phosphate and an inhibitor of cancer call colony formation. J. Med. Chem. (1995) 38:1053-1056.
  • QIAO L, NAN F, KUNKEL M et al.: 3-Deoxy-D-myo-inositol 1-phosphate, 1-phosphonate, and ether lipid analogues as inhibitors of phosphatidylinositol3-kinase signaling and cancer cell growth. J. Med. Chem. (1998) 41:3303-3306.
  • HU Y, QIAO L, WANG S et al.: 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth. J. Med. Chem. (2000) 43:3045-3051.
  • HU Y, MEUILLET EJ, QIAO L et al.: Synthesis and Akt inhibitory properties of a 1D-3,4-dideoxyphosphatidylinositol ether lipid. Tetrahedron Lett. (2000) 41:7415-7418.
  • HU Y, MEUILLET EJ, BERGGREN M et al.: 3-Deoxy-3-substituted-D-myo-inositol imidazolyl ether lipid phosphates and carbonate as inhibitors of the phosphatidylinositol 3-kinase pathway and cancer cell growth. Bioorg. Med. Chem. Lett. (2001) 11:173-176.
  • MEUILLET EJ, IHLE N, BAKER AF et al.: In vivo molecular pharmacology and antitumour activity of the targeted Akt inhibitor PX-316. Oncol. Res. (2004) 14:513-527.
  • WILLIAMS R, BAKER AF, IHLE NT et al.: The skin and hair as surrogate tissue for measuring the target effect of inhibitors of phosphoinositide-3-kniase signaling. Cancer Chemother. Pharmacol. (2006) 58:444-450.
  • MEUILLET EJ, MAHADEVAN D, VANKAYALAPATI H et al.: Specific inhibition of the Akt1 pleckstrin homology domain by D-3-deoxy-phosphatidyl-myo-inositol analogues. Mol. Cancer Ther. (2003) 2:389-399.
  • MARTELLI AM, TAZZARI PL, TABELLINI G et al.: A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia (2003) 17:1794-1805.
  • KOZIKOWSKI AP, SUN H, BROGNARD J et al.: Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. J. Am. Chem. Soc. (2003) 125:1144-1145.
  • CASTILLO SS, BROGNARD J, PETUKHOV PA et al.: Preferential inhibition of Akt and killing of Akt-dependent cancer cells by rationally designed phosphatidylinositol ether lipid analogues. Cancer Res. (2004) 64:2782-2792.
  • RONG S, HU Y, ENYEDY I et al.: Molecular modeling studies of the Akt PH domain and its interaction with phosphoinositides. J. Med. Chem. (2001) 44:898-908.
  • MOLLINEDP F: Antitumour ether lipids: proapoptotic agents with multiple therapeutic indications. Expert Opin. Ther. Patents (2007) 17:385-405.
  • KONDAPAKA SB, SINGH SS, DASMAHAPATRA GP et al.: Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther. (2003) 2:1093-1103.
  • RUITER GA, ZERP SF, BARTELINK H et al.: Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs (2003) 14:167-173.
  • GILLS JJ, HOLBECK S, HOLLINGSHEAD M et al.: Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt. Mol. Cancer Ther. (2006) 5:713-722.
  • PORDADOSU E, LEMMON MA, KELETI D: Perifosine selectively inhibits binding of Akt PH domain to PtdIns(3,4)P2. Annual Meeting of American Association for Cancer Research. Los Angeles, USA (2007):(Abstract 1645).
  • HILGARD P, KLENNER T, STEKAR J et al.: D-21266, a new heterocyclic alkylphospholipid with antitumour activity. Eur. J. Cancer (1997) 33:442-446.
  • RYBCZYNSKA M, SPITALER M, KNEBEL NG et al.: Effects of miltefosine on various biochemical parameters in a panel of tumour cell lines with different sensitivities. Biochem. Pharmacol. (2001) 62:765-772.
  • PATEL V, LAHUSEN T, SY T et al.: Perifosine, a novel alkylphospholipid, induces p21(WAF1) expression in squamous carcinoma cells through a p53-independent pathway, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Cancer Res. (2002) 62:1401-1409.
  • DASMAHAPATRA GP, DIDOLKAR P, ALLEY MC et al.: In vitro combination treatment with perifosine and UCN-01 demonstrates synergism against prostate (PC-3) and lung (A549) epithelial adenocarcinoma cell lines. Clin. Cancer Res. (2004) 10:5242-5252.
  • RAHMANI M, REESE E, DAI Y et al.: Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res. (2005) 65:2422-2432.
  • HIDESHIMA T, CATLEY L, YASUI H et al.: Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood (2006) 107:4053-4062.
  • NYAKERN M, CAPPELLINI A, MANTOVANI I et al.: Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways. Mol. Cancer Ther. (2006) 5:1559-1570.
  • LI X, LUWOR R, LU Y et al.: Enhancement of antitumour activity of the anti-EGF receptor monoclonal antibody cetuximab/C225 by perifosine in PTEN-deficient cancer cells. Oncogene (2006) 25:525-535.
  • LIN Y, LIU X, CHEN Z et al.: Therapeutic potential of the Akt inhibitor perifosine in combination with TNF-related apoptosis-inducing ligand (TRAIL) for metastatic head and neck cancer. Annual Meeting of American Association for Cancer Research. Los Angeles, USA (2007):(Abstract 2405).
  • VINK SR, SCHELLENS JH, VAN BLITTERSWIJK WJ et al.: Tumour and normal tissue pharmacokinetics of perifosine, an oral anti-cancer alkylphospholipid. Invest. New Drugs (2005) 23:279-286.
  • CRUL M, ROSING H, DE KLERK GJ et al.: Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur. J. Cancer (2002) 38:1615-1621.
  • MOMOTA H, NERIO E, HOLLAND EC: Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res. (2005) 65:7429-7435.
  • VAN UMMERSEN L, BINGER K, VOLKMAN J et al.: A Phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin. Cancer Res. (2004) 10:7450-7456.
  • ERNST DS, EISENHAUER E, WAINMAN N et al.: Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest. New Drugs (2005) 23:569-575.
  • KNOWLING M, BLACKSTEIN M, TOZER R et al.: A Phase II study of perifosine (D-21226) in patients with previously untreated metastatic or locally advanced soft tissue sarcoma: a national cancer institute of canada clinical trials group trial. Invest. New Drugs (2006) 24:435-439.
  • BAILEY HH, MAHONEY MR, ETTINGER DS et al.: Phase II study of daily oral perifosine in patients with advanced soft tissue sarcoma. Cancer (2006) 107:2462-2467.
  • LEIGHL NB, DENT S, CLEMONS M et al.: A Phase II study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res. Treat. (2007) [Epub ahead of print].
  • ERNST DS, EISENHAUER E, WAINMAN N et al.: Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest. New Drugs (2005) 23:569-575.
  • POSADAS EM, GULLEY J, ARLEN PM et al.: A Phase II study of perifosine in androgen independent prostate cancer. Cancer Biol. Ther. (2005) 4:1133-1137.
  • ARGIRIS A, COHEN E, KARRISON T et al.: A Phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol. Ther. (2006) 5:766-770.
  • MARSH RDE W, ROCHA LIMA CM, LEVY DE et al.: A Phase II trial of perifosine in locally advanced, unresectable, or metastatic pancreatic adenocarcinoma. Am. J. Clin. Oncol. (2007) 30:26-31.
  • SCHRAM KH, TOWNSEND LB: The synthesis of 6-amino-4-methyl-8-(β-D-ribofuranosyl) (4-H,8-H)pyrrolo-[4,3,2-de]pyrimido[4,5-c]pyridazine, a new tricyclic nucleoside. Tetrahedron Lett. (1971) 49:4757-4760.
  • YANG L, DAN HC, SUN M et al.: Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumour activity in cancer cells overexpressing Akt. Cancer Res. (2004) 64:4394-4399.
  • SCHWEINSBERG PD, SMITH RG, LOO TL: Identification of the metabolites of an antitumour tricyclic nucleoside (NSC-154020). Biochem. Pharmacol. (1981) 30:2521-2526.
  • MITTELMAN A, CASPER ES, GODWIN TA et al.: Phase I study of tricyclic nucleoside phosphate. Cancer Treat. Rep. (1983) 67:159-162.
  • FEUN LG, SAVARAJ N, BODEY GP et al.: Phase I study of tricyclic nucleoside phosphate using a five-day continuous infusion schedule. Cancer Res. (1984) 44:3608-3612.
  • SCHILCHER RB, HAAS CD, SAMSON MK et al.: Phase I evaluation and clinical pharmacology of tricyclic nucleoside 5′-phosphate using a weekly intravenous regimen. Cancer Res. (1986) 46:3147-3151.
  • POWIS G, BASSECHES PJ, KROSCHEL DM et al.: Disposition of tricyclic nucleoside-5′-monophosphate in blood and plasma of patients during Phase I and II clinical trials. Cancer Treat. Rep. (1986) 70:359-362.
  • FEUN LG, BLESSING JA, BARRETT RJ et al.: A Phase II trial of tricyclic nucleoside phosphate in patients with advanced squamous cell carcinoma of the cervix. A gynecologic oncology group study. Am. J. Clin. Oncol. (1993) 16:506-508.
  • HOFFMAN K, HOLMES FA, FRASCHINI G et al.: Phase I – II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother. Pharmacol. (1996) 37:254-258.
  • MOHAPATRA S, CHU B, ZHAO X et al.: Combination inhibition of Cdk9 and Akt induces apoptosis of metastatic prostate cancer cells. Annual Meeting of American Association for Cancer Research. Los Angeles, USA (2007):(Abstract 5399).
  • SHERTZER HG, SENFT AP: The micronutrient indole-3-carbinol: implications for disease and chemoprevention. Drug Metabol. Drug Interact. (2000) 17:159-188.
  • ROGAN EG: The natural chemopreventive compound indole-3-carbinol: state of the science. In vivo (2006) 20:221-228.
  • DE BILDERLING G, BODART E, LAWSON G et al.: Successful use of intralesional and intravenous cidofovir in association with indole-3-carbinol in an 8-year-old girl with pulmonary papillomatosis. J. Med. Virol. (2005) 75:332-335.
  • BELL MC, CROWLEY-NOWICK P, BRADLOW HL et al.: Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol. Oncol. (2000) 78:123-129.
  • NAIK R, NIXON S, LOPES A et al.: A randomized Phase II trial of indole-3-carbinol in the treatment of vulvar intraepithelial neoplasia. Int. J. Gynecol. Cancer (2006) 16:786-790.
  • AGGARWAL BB, SHISHODIA S: Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. (2006) 71:1397-1421.
  • HOWELLS LM, GALLACHER-HORLEY B, HOUGHTON CE et al.: Indole-3-carbinol inhibits protein kinase B/Akt and induces apoptosis in the human breast tumour cell line MDA MB468 but not in the nontumourigenic HBL100 line. Mol. Cancer Ther. (2002) 1:1161-1172.
  • CHINNI SR, SARKAR FH: Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin. Cancer Res. (2002) 8:1228-1236.
  • RAHMAN KM, LI Y, SARKAR FH: Inactivation of Akt and NF-κB play important roles during indole-3-carbinol-induced apoptosis in breast cancer cells. Nutr. Cancer (2004) 48:84-94.
  • GROSE KR, BJELDANES LF: Oligomerization of indole-3-carbinol in aqueous acid. Chem. Res. Toxicol. (1992) 5:188-193.
  • JONG L, CHAO W, AMIN K et al.: SR13668: an orally active inhibitor of phosphor-Akt potently suppresses tumour growth and synergizes with chemotherapeutics both in vitro and in vivo. Annual Meeting of American Association for Cancer Research. Anaheim, USA (2005):(Abstract 1701).
  • YEAN D, CHAO W, GREEN C et al.: SR13668: a novel dietary indole analogue blocks growth factor-stimulated Akt activation and cell proliferation in various cancer cell lines. Annual Meeting of American Association for Cancer Research. Los Angeles, USA (2007):(Abstract 3364).
  • CHO W-R, YEAN D, AMIN K et al.: Computer-aided rational drug design: a novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. J. Med. Chem. (2007) 50:3412-3415.
  • KYPRIANOU N: Doxazosin and terazosin suppress prostate growth by inducing apoptosis: clinical significance. J. Urol. (2003) 169:1520-1525.
  • CAL C, USLU R, GUNAYDIN G et al.: Doxazosin: a new cytotoxic agent for prostate cancer? BJU Int. (2000) 85:672-675.
  • SHAW YJ, YANG YT, GARRISON JB et al.: Pharmacological exploitation of the a1-adrenoreceptor antagonist doxazosin to develop a novel class of antitumour agents that block intracellular protein kinase B/Akt activation. J. Med. Chem. (2004) 47:4453-4462.
  • CHIANG CF, SON EL, WU GJ: Oral treatment of the TRAMP mice with doxazosin suppresses prostate tumour growth and metastasis. Prostate (2005) 64:408-418.
  • MATSUOKA Y, NAGAHARA Y, IKEKITA M et al.: A novel immunosuppressive agent FTY720 induced Akt dephosphorylation in leukemia cells. Br. J. Pharmacol. (2003) 138:1303-1312.
  • LI Y, SARKAR FH: Inhibition of NF-κB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin. Cancer Res. (2002) 8:2369-2377.
  • BARVE V, AHMED F, ADSULE S et al.: Synthesis, molecular characterization, and biological activity of novel synthetic derivatives of chromen-4-one in human cancer cells. J. Med. Chem. (2006) 49:3800-3808.
  • JIN X, GOSSETT DR, WANG S et al.: Inhibition of AKT survival pathway by a small molecule inhibitor in human endometrial cancer cells. Br. J. Cancer (2004) 91:1808-1812.
  • ZHANG M, FANG X, LIU H et al.: Bioinformatics-based discovery and characterization of an AKT-selective inhibitor 9-chloro-2-methylellipticinium acetate (CMEP) in breast cancer cells. Cancer Lett. (2007) 252:244-258.
  • JURAYJ J, HAUGWITZ RD, VARMA RK et al.: Design and synthesis of ellipticinium salts and 1,2-dihydroellipticines with high selectivities against human CNS cancers in vitro. J. Med. Chem. (1994) 37:2190-2197.
  • ACTON EM, NARAYANAN VL, RISBOOD PA et al.: Anticancer specificity of some ellipticinium salts against human brain tumours in vitro. J. Med. Chem. (1994) 37:2185-2189.
  • ARGUELLO F, ALEXANDER MA, GREENE JF Jr et al.: Preclinical evaluation of 9-chloro-2-methylellipticinium acetate alone and in combination with conventional anticancer drugs for the treatment of human brain tumour xenografts. J. Cancer Res. Clin. Oncol. (1998) 124:19-26.
  • TANG HJ, JIN X, WANG S et al.: A small molecule compound inhibits AKT pathway in ovarian cancer cell lines. Gynecol. Oncol. (2006) 100:308-317.
  • ZHANG M, FANG X, LIU H et al.: Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP). Biochem. Pharmacol. (2007) 73:15-24.
  • MALIK SM, HWANG J, MARSHALL J et al.: Phase I study of RX-0210 in patients with advanced or metastatic solid tumors. J. Clin. Oncol., 2006 ASCO Annual Meeting Proceedings (2006) 24(18S):13102.
  • SALE EM, HODGKINSON CP, JONES NP et al.: A new strategy for studying protein kinase B and its three isoforms. Role of protein kinase B in phosphorylating glycogen synthase kinase-3, tuberin, WNK1, and ATP citrate lyase. Biochemistry (2006) 45:213-223.
  • PU P, KANG C, LI J et al.: The effects of antisense AKT2 RNA on the inhibition of malignant glioma cell growth in vitro and in vivo. J. Neurooncol. (2006) 76:1-11.
  • PU P, KANG C, LI J et al.: Antisense and dominant-negative AKT2 cDNA inhibits glioma cell invasion. Tumour Biol. (2004) 25:172-178.
  • ALESSI DR, CAUDWELL FB, ANDJELKOVIC M et al.: Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. (1996) 399:333-338.
  • OBATA T, YAFFE MB, LEPARC GG et al.: Use of peptide and protein library screening to define optimal substrate motifs for Akt/PKB. J. Biol. Chem. (2000) 275:2608-36115.
  • YANG J, CRON P, GOOD VM et al.: Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat. Struct. Biol. (2002) 9:940-944.
  • LUO Y, SMITH RA, GUAN R et al.: Pseudosubstrate peptides inhibit Akt and induce cell growth inhibition. Biochemistry (2004) 43:1254-1263.
  • KAYSER KJ, GLENN MP, SEBTI SM et al.: Modifications of the GSK3β substrate sequence to produce substrate-mimetic inhibitors of Akt as potential anti-cancer therapeutics. Bioorg. Med. Chem. Lett. (2007) 17:2068-2073.
  • LAINE J, KUNSTLE G, OBATA T et al.: The protooncogene TCL1 is an Akt kinase coactivator. Mol. Cell(2000) 6:395-407.
  • KUNSTLE G, LAINE J, PIERRON G et al.: Identification of Akt association and oligomerization domains of the Akt kinase coactivator TCL1. Mol. Cell Biol. (2002) 22:1513-1525.
  • AUGUIN D, BARTHE P, ROYER C et al.: Structural basis for the co-activation of protein kinase B by T-cell leukemia-1 (TCL1) family proto-oncoproteins. J. Biol. Chem. (2004) 279:35890-35902.
  • HIROMURA M, OKADA F, OBATA T et al.: Inhibition of Akt kinase activity by a peptide spanning the βA strand of the proto-oncogene. TCL1. J. Biol. Chem. (2004) 279:53407-53418.
  • CHO-CHUNG YS, PEPE S, CLAIR T et al.: cAMP-dependent protein kinase: role in normal and malignant growth. Crit. Rev. Oncol. Hematol. (1995) 21:33-61.
  • SHABB JB: Physiological substrates of cAMP-dependent protein kinase. Chem. Rev. (2001) 101:2381-2411.
  • YANG ZZ, TSCHOPP O, BAUDRY A et al.: Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans. (2004) 32:350-354.
  • DUMMLER B, HEMMINGS BA: Physiological roles of PKB/Akt isoforms in development and disease. Biochem. Soc. Trans. (2007) 35:231-235.
  • CHO H, THORVALDSEN JL, CHU Q et al.: Akt1/PKBa is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. (2001) 276:38349-38352.
  • CHEN WS, XU PZ, GOTTLOB K et al.: Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. (2001) 15:2203-2208.
  • CHO H, MU J, KIM JK et al.: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science (2001) 292:1728-1731.
  • EASTON RM, CHO H, ROOVERS K et al.: Role for Akt3/protein kinase Bγ in attainment of normal brain size. Mol. Cell Biol. (2005) 25:1869-1878.
  • TSCHOPP O, YANG ZZ, BRODBECK D et al.: Essential role of protein kinase Bκ (PKBκ/Akt3) in postnatal brain development but not in glucose homeostasis. Development (2005) 132:2943-2954.
  • PENG XD, XU PZ, CHEN ML et al.: Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. (2003) 17:1352-1365.
  • YANG ZZ, TSCHOPP O, DI-POI N et al.: Dosage-dependent effects of Akt1/protein kinase Bα (PKBα) and Akt3/PKBγ on thymus, skin, and cardiovascular and nervous system development in mice. Mol. Cell Biol. (2005) 25:10407-10418.
  • DUMMLER B, TSCHOPP O, HYNX D et al.: Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol. Cell Biol. (2006) 26:8042-8051.
  • CERVERA A, BERMHARDT B, NEMUNAITIS JJ: Perifosine can be combined with docetaxel without dose reduction of ether drug. J. Clin. Oncol., 2006 ASCO Annual Meeting Proceedings Part I (2006) 24:13066.
  • HOFFMAN K, HOLMES FA, FRASCHINI G et al.: Phase I – II study: triciribine (tricyclic nucleoside phosphate) for metastatic breast cancer. Cancer Chemother. Pharmacol. (1996) 37:254-258.
  • ZHU GD, GANDHI VB, GONG J et al.: Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension. J. Med. Chem. (2007) 50:2990-3003.
  • GONG J, GANDHI VB, LI T: Protein kinase B/Akt antagonists as antitumor agents Part 4: syntheses of potent, highly selective and orally bioavailable Akt inhibitors with reduced toxicity. 229th ACS National Meeting 2005, MEDI-144 (Abstract).
  • O'NEILL BT, ABEL ED: Akt1 in the cardiovascular system: friend or foe? J. Clin. Invest. (2005) 115:2059-2064.
  • KOMALAVILAS P, MEHTA S, WINGARD CJ et al.: PI3-kinase/Akt modulates vascular smooth muscle tone via cAMP signaling pathways. J. Appl. Physiol. (2001) 91:1819-1827.
  • LATRONICO MV, COSTINEAN S, LAVITRANO ML et al.: Regulation of cell size and contractile function by AKT in cardiomyocytes. Ann. NY Acad. Sci. (2004) 1015:250-260.
  • MATSUI, T, TAO J, DEL MONTE F et al.: Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation (2001) 104:330-335.
  • VITARI AC, DEAK M, COLLINS BJ et al.: WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate. Biochem. J. (2004) 378:257-268.
  • ZHANG Y, WANG H, WANG J et al.: Normal function of HERG K+ channels expressed in HEK293 cells requires basal protein kinase B activity. FEBS Lett. (2003) 534:125-132.
  • HARRINGTON LS, FINDLAY GM, GRAY A: The TSCL-2 tumor suppressor controls insulin-PI3K signaling via regulation of ISR proteins. J. Cell Biol. (2004) 166:213-223.
  • HAN EK, LEVERSON JD, MCGONIGAL T et al.: Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene (2007) 26:F5655-5661.
  • HAY N: The Akt-mTOR tango and its relevance to cancer. Cancer Cell (2005) 8:179-183.
  • SUN SY, ROSENBERG LM, WANG X et al.: Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. (2005) 65:7052-7058.
  • SHI Y, YAN H, FROST P et al.: Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol. Cancer Ther. (2005) 4:1533-1540.
  • O'REILLY KE, ROJO F, SHE QB et al.: mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. (2006) 66:1500-1508.
  • YOELI-LERNER M, TOKER A: Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle (2006) 5:603-605.
  • HUTCHINSON JN, JIN J, CARDIFF RD et al.: Activation of Akt-1 (PKB-a) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. Cancer Res. (2004) 64:3171-3178.
  • ARBOLEDA MJ, LYONS JF, KABBINAVAR FF et al.: Overexpression of AKT2/protein kinase Bβ leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. (2003) 63:196-206.

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.