204
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Acridine/acridone: a simple scaffold with a wide range of application in oncology

&
Pages 1211-1224 | Published online: 29 Oct 2008

Bibliography

  • Ma CY, Ho CH, Caton JE, et al. Isolation and identification of benzoquinolines in natural and synthetic crude oils. Fuel 1987;66(5):612-7
  • Tomkins BA, Ho CH. Determination of polycyclic aromatic amines in natural and synthetic crudes. Anal Chem 1982;54(1):91-6
  • Tillequin F, Koch M. Acronycine revisited: development of benzo[b]acronycine antitumor agents. Ann Pharm Fr 2005;63(1):35-43
  • Michael JP. The acridine alkaloids. Rodd's Chem Carbon Compd 1998;4:483-506
  • Koch M. From acronycine to benzo[b]acronycine derivatives: potent antitumor agents. Bull Acad Natl Med 2007;191(1):83-93
  • Delfourne E, Bastide J. Marine pyridoacridine alkaloids and synthetic analogues as antitumor agents. Med Res Rev 2003;23(2):234-52
  • Marshall KM, Barrows LR. Biological activities of pyridoacridines. Nat Prod Rep 2004;21(6):731-51
  • Wainwright M. Acridine, a neglected antibacterial chromophore. J Antimicrob Chemother 2001;47(1):1-13
  • Michael JP. Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 2008;25(1):166-87
  • Albert A. The acridines (2nd edition). London: Edward Arnold Publishers; 1966
  • Demeunynck M. Antitumour acridines. Expert Opin Ther Pat 2004;14(1):55-70
  • Demeunynck M, Charmantray F, Martelli A. Interest of acridine derivatives in the anticancer chemotherapy. Curr Pharm Des 2001;7(17):1703-24
  • Denny WA. Chemotherapeutic effects of acridine derivatives. Med Chem Rev 2004;1(3):257-66
  • Belmont P, Bosson J, Godet T, Tiano M. Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med Chem 2007;7(2):139-69
  • Antonini I. Intriguing classes of acridine derivatives as DNA-binding antitumour agents: from pyrimido[5,6,1-de]acridine to bis(acridine-4-carboxamides). Med Chem Rev 2004;1(3):267-90
  • Baguley BC, Wakelin LPG, Jacintho JD, Kovacic P. Mechanisms of action of DNA intercalating acridine-based drugs: How important are contributions from electron transfer and oxidative stress? Curr Med Chem 2003;10(24):2643-9
  • Gniazdowski M, Denny WA, Nelson SM, Czyz M. Transcription factors as targets for DNA-interacting drugs. Curr Med Chem 2003;10(11):909-24
  • Hutchinson OC, Collingridge DR, Barthel H, et al. Pharmacokinetics of radiolabelled anticancer drugs for positron emission tomography. Curr Pharm Design 2003;9(11):917-29
  • Kelland LR. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics - current status and future prospects. Eur J Cancer 2005;41(7):971-9
  • Martinez R, Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 2005;12(2):127-51
  • Pujol MD, Romero M, Sanchez I. Synthesis and biological activity of new class of dioxygenated anticancer agents. Curr Med Chem Anticancer Agents 2005;5(3):215-37
  • Kukowska-Kaszuba M, Dzierzbicka K. Synthesis and structure-activity studies of peptide-acridine/acridone conjugates. Curr Med Chem 2007;14(29):3079-104
  • Langner KM, Kedzierski P, Sokalski WA, Leszczynski J. Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane. J Phys Chem B 2006;110(19):9720-7
  • Todd AK, Adams A, Thorpe JH, et al. Major groove binding and ‘DNA-induced’ fit in the intercalation of a derivative of the mixed topoisomerase I/II poison N-(2-(dimethylamino)ethyl)acridine-4- carboxamide (DACA) into DNA: X-ray structure complexed to d(CG(5-BrU)ACG)2 at 1.3-.ANG. resolution. J Med Chem 1999;42(4):536-40
  • Liu C, Jiang Z, Zhang Y, et al. Intercalation interactions between dsDNA and acridine studied by single molecule force spectroscopy. Langmuir 2007;23(18):9140-2
  • Denny WA. Acridine-4-carboxamides and the concept of minimal DNA intercalators. Small Mol DNA RNA Binders 2003;2:482-502
  • Belmont P, Constant J-F, Demeunynck M. Nucleic acid conformation diversity: from structure to function and regulation. Chem Soc Rev 2001;30:70-81
  • Hopcroft NH, Brogden AL, Searcey M, Cardin CJ. X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d(CGTACG)2 molecules by a bis(9-aminoacridine-4-carboxamide) derivative. Nucleic Acids Res 2006;34(22):6663-72
  • Brogen AL, Hopcroft NH, Searcy M, Cardin CJ. Ligand bridging of the DNA holliday junction: molecular recognition of a stacked-X four-way junction by a small molecule. Angew. Chem Int Ed 2007;46:3850-54
  • Triesscheijn M, Baas P, Schellens JHM, Stewart FA. Photodynamic therapy in oncology. Oncologist 2006;11(9):1034-44
  • Hasan T, Solban N. Photochemical effects in laser-tissue interactions: photodynamic therapy, an overview. Proc SPIE Int Soc Optical Eng 2004;5319(Laser Interaction with Tissue and Cells XV):41-9
  • Deonarain M, Yahioglu G, Bhatti M, inventors; (Photobiotics Limited, UK), assignee. Conjugates of photosensitizing agents with targeting proteins and their use in photodynamic therapy. Application: WO patent 2006-GB3733, 2007042775. 20061006; 2007
  • Matsubara T, Kusuzaki K, Matsumine A, et al. Acridine orange used for photodynamic therapy accumulates in malignant musculoskeletal tumors depending on pH gradient. Anticancer Res 2006;26(1A):187-93
  • Kusuzaki K, Murata H, Matsubara T, et al. Clinical outcome of a novel photodynamic therapy technique using acridine orange for synovial sarcomas. Photochem Photobiol 2005;81:705-9
  • Kusuzaki K, Murata H, Matsubara T, et al. Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer Res 2005;25(2B):1225-35
  • Ueda H, Murata H, Takeshita H, et al. Unfiltered xenon light is useful for photodynamic therapy with acridine orange. Anticancer Res 2005;25(6B):3979-83
  • Wilson B, Gude L, Fernandez M-J, et al. Tunable DNA photocleavage by an acridine-imidazole conjugate. Inorg Chem 2005;44(18):6159-73
  • Simon SM, Schindler MS, inventors; (USA), assignee. Methods and agents for measuring and controlling multidrug resistance. Application: US patent 98-80739, 2002042079. 19980518; 2002
  • Morrison H, Menon E, Loganathan D, inventors; (Purdue Research Foundation, USA; Mohammad, Taj; Navarro Acosta, Maribel Coromoto; Billadeau, Mark A. Following Assignees present), assignee. Photoactivated anti-viral and anti-cancer agent. Application: WO patent 2003-US24096, 2004012667. 20030801; 2004
  • Rychnovsky SJ. Inventor (Miravant Systems, Inc., USA), assignee. Method for improving treatment selectivity and efficacy using intravascular photodynamic therapy. Application: WO patent 2002-US17069, 2002096365. 20020531; 2002
  • Rajagopalan R, Cantrell GL, Bugaj JE, et al., inventors; (Mallinckrodt Inc., USA), assignee. Azo compounds for type I phototherapy. Application: US patent 2002-272123, 2003072763. 20021015; 2003
  • Rajagopalan R, Bugaj JE, Achilefu SI, Dorshow RB, inventors; (Mallinckrodt Inc., USA), assignee. Internal image antibodies for optical imaging and therapy. Application: WO patent 2002-US22755, 2003011106. 20020718; 2003
  • Alberto RA, Schibli R, inventors; (Mallinckrodt Inc., USA), assignee. Molecules for the treatment and diagnosis of tumors. Application: WO patent 2000-EP1553, 2000050086. 20000224; 2000
  • Johannesen EWM, inventor (GE Healthcare AS, Norway), assignee. Optical imaging contrast agents. Application: WO patent 2006-NO264, 2007008080. 20060710; 2007
  • Dertinger SD, Torous DK, Tometsko CR, inventors; (Litron Laboratories Ltd., USA), assignee. Method for the enumeration of mammalian micronucleated erythrocyte populations with a single-laser flow cytometer. Application: WO patent 2002-US26209, 2003016866. 20020816; 2003
  • Lawaczeck R, Platzek J, Raduchel B, inventors; (Schering Aktiengesellschaft, Germany), assignee. Metal macrocycles for two-step forms of radiotherapy. Application: WO patent 2000-EP473, 2000045857. 20000121; 2000
  • Wachter E, Smolik J, Dees HC, inventors; (Photogen, Inc., USA), assignee. Method for improved radiation therapy. Application: WO patent 2000-US1815, 2000043045. 20000125; 2000
  • Heston WDW, Cramer H, inventors; (The Cleveland Clinic Foundation, USA), assignee. Compounds which bind prostate-specific membrane antigen (PSMA), and therapeutic and diagnostic uses thereof. Application: WO patent 2006-US7141, 2006093991. 20060301; 2006
  • Monchaud D, Teulade-Fichou M-P. A hitchhiker's guide to G-quadruplex ligands. Org Biomol Chem 2008;6(4):627-36
  • Gellert GC, Jackson SR, Dikmen ZG, et al. Telomerase as therapeutic target in cancer. Drug Discov Today Disease Mech 2005;2(2):159-64
  • Riou J-F. G-Quadruplex Interacting agents. Curr Med Chem Anticancer Agents 2004;4:439-43
  • Mergny J-L, Riou J-F, Mailliet P, et al. Natural and pharmacological regulation of telomerase. Nucleic Acids Res 2002;30(4):839-65
  • Cech TR. Life at the end of the chromosome: telomeres and telomerase. Angew Chem Int Ed 2000;39:34-43
  • Kerwin SM. G-quadruplex DNA as a target for drug design. Curr Pharm Des 2000;6:441-71
  • Hurley LH, Wheelhouse RT, Sun D, et al. G-quadruplexes as target for drug design. Pharmacol Ther 2000;85:141-58
  • Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 2002;417:876-80
  • Haider SM, Parkinson GN, Neidle S. Structure of a G-quadruplex-Ligand Complex. J Mol Biol 2003;326(1):117-25
  • Perry PJ, Reszka AP, Wood AA, et al. Human telomerase inhibition by regioisomeric disubstituted amidoanthracene-9,10-diones. J Med Chem 1998;41:4873-84
  • Neidle S, Read MA. G-quadruplexes as therapeutic targets. Biopolymers 2001;56:195-208
  • Read MA, Harrison RJ, Romagnoli B, et al. Structure telomerase inhibitors. Proc Natl Acad Sci USA 2001;98(9):4844-9
  • Harrison RJ, Cuesta J, Chessari G, et al. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J Med Chem 2003;46(21):4463-76
  • Neidle S, Harrison RJ, Kelland LR, et al., inventors; (Cancer Research Technology Limited, UK), assignee. Preparation of acridone and acridine compounds as telomerase inhibitors for use in pharmaceutical compns. for the treatment of cancer and other proliferative diseases. Application: WO patent 2003-GB102, 2003059885. 20030114; 2003
  • Martins C, Neidle S, Gunaratnam M, et al., inventors; (Antisoma PLC, UK; Cancer Research Technology Ltd), assignee. Acridine derivatives exhibiting telomerase inhibition and antiproliferative activity for treatment of cancer. Application: WO patent 2006-GB740, 2006095139. 20060302; 2006
  • Cheng M-K, Modi C, Cookson JC, et al. Antitumor polycyclic acridines. 20. Search for DNA quadruplex binding selectivity in a Series of 8,13-Dimethylquino[4,3,2-kl]acridinium salts: telomere-targeted Agents. J Med Chem 2008;51(4):963-75
  • Heald RA, Modi C, Cookson JC, et al. Antitumor polycyclic acridines. J Med Chem 2002;45:590-7
  • Ellis MJ, Stevens MFG. Antitumour polycyclic acridines. Part 13. Synthesis of 2-substituted 7H-pyrido[4,3,2-kl]acridines by thermolysis of 9-(5-alkyltriazol-1-yl)acridines. J Chem Res 2003;(2):75-7
  • Heald RA, Stevens MFG. Antitumor polycyclic acridines. Palladium(0)-mediated syntheses of quino[4,3,2-kl]acridines bearing peripheral substituents as potential telomere maintenance inhibitors. Org Biomol Chem 2003;1(19):3377-89
  • Stevens MFG, Kelland LR, Heald RA, inventors; (Cancer Research Ventures Limited, UK), assignee. N8,N13-Disubstituted quino[4,3,2-kl]acridinium salts as therapeutic agents. Application: WO patent 2001-GB4557, 2002030932. 20011012; 2002
  • Leonetti C, Amodei S, D'Angelo C, et al. Biological activity of the G-quadruplex ligand RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate) is associated with telomere capping alteration. Mol Pharmacol 2004;66(5):1138-46
  • Cookson JC, Heald RA, Stevens MFG. Antitumor polycyclic acridines. 17. Synthesis and pharmaceutical profiles of pentacyclic acridinium salts designed to destabilize telomeric integrity. J Med Chem 2005;48(23):7198-207
  • Teulade-Fichou M-P, Carrasco C, Guittat L, et al. Selective recognition of G-qQuadruplex telomeric DNA by a bis(quinacridine) macrocycle. J Am Chem Soc 2003;125(16):4732-40
  • Teulade-Fichou M-P, Hounsou C, Guittat L, et al. Molecular recognition of quadruplex DNA by quinacridine derivatives. Nucleic Acids Res 2003;22(5-8):1483-5
  • Mergny J-L, Lacroix L, Teulade-Fichou M-P, et al., inventors; (Institut National De La Sante Et De La Recherche Medicale (I.N.S.E.R.M.), Fr.; Centre National De La Recherche Scientifique (C.N.R.S.); Museum National D'histoire Naturelle), assignee. Use of polycyclic aromatic compounds for making medicines capable of inhibiting telomerase and treating cancer. Application: WO patent 2001-FR2492, 2002010165. 20010730; 2002
  • Mergny J-L, Lacroix L, Teulade-Fichou M-P, et al. Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci USA 2001;98(6):3062-7
  • Schultes CM, Guyen B, Cuesta J, Neidle S. Synthesis, biophysical and biological evaluation of 3,6-bis-amidoacridines with extended 9-anilino substituents as potent G-quadruplex-binding telomerase inhibitors. Bioorg Med Chem Lett 2004;14:4347-51
  • Kaiser M, Sainlos M, Lehn J-M, et al. Aminoglycoside-quinacridine conjugates: towards recognition of the P6.1 element of telomerase RNA. ChemBioChem 2006;7:321-9
  • Teulade-Fichou M-P, Lehn J-M, Petitjean A, et al., inventors; (Fr.), assignee. 4,6-Bis[6-(acridin-9-yl)pyridin-2-yl]pyrimidines and their preparation compositions and methods for treating cancer and other diseases characterized by abnormal cell proliferation. Application: CA patent 2006-2554737, 2554737. 20060731; 2007
  • Erikson GH, inventor (Ingeneus Corporation, Barbados), assignee. Method for modifying transcription and/or translation in an organism by heteropolymeric probes and duplex, triplex or quadruplex hybridization for therapeutic, prophylactic and/or analytic uses. Application: US patent 2003-438151, 2003181412. 20030514; 2003
  • Erikson GH, Daksis JI, inventors; (Ingeneus Corporation, Barbados), assignee. Multivalent cations and intercalating agents facilitating formation of quadruplex nucleic acid probes and their potential use in diagnosis, prophylaxis, therapy and nanoengineering applications. Application: US patent 2000-664827, 6900300. 20000919; 2005
  • Holden JA. DNA topoisomerases as anticancer drug targets: from the laboratory to the clinic. Curr Med Chem Anticancer Agents 2001;1(1):1-25
  • Denny WA, Baguley BC. Dual topoisomerase I/II inhibitors in cancer therapy. Curr Top Med Chem 2003;3(3):339-53
  • Leppard JB, Champoux JJ. Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 2005;114(2):75-85
  • Finlay GJ, Atwell GJ, Baguley BC. Inhibition of the action of the topoisomerase II poison amsacrine by simple aniline derivatives: evidence for drug-protein interactions. Oncology Res 1999;11(6):249-54
  • Chourpa I, Morjani H, Riou J-F, Manfait M. Intracellular molecular interactions of antitumor drug amsacrine (m-AMSA) as revealed by surface-enhanced Raman spectroscopy. FEBS Lett 1996;397:61-4
  • Su T-L, Chou T-C, Kim JY, et al. 9-Substituted acridine derivatives with long half-life and potent antitumor activity: synthesis and structure-activity relationships. J Med Chem 1995;38:3226-35
  • Chang J-Y, Lin C-F, Pan W-Y, et al. New analogues of AHMA as potential antitumor agents: synthesis and biological activity. Bioorg Med Chem 2003;11(23):4959-69
  • Bacherikov VA, Chang J-Y, Lin Y-W, et al. Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives. Bioorg Med Chem 2005;13(23):6513-20
  • Geroni MCR, Cozzi P, Beria I, inventors; (Pharmacia & Upjohn S.p.A., Italy), assignee. Combined therapy against tumors comprising substituted acryloyl distamycin derivatives and topoisomerase I and II inhibitors. Application: WO patent 2001-EP7059, 2001097789. 20010620; 2001
  • Munzert G, Steegmaier M, Baum A, inventors; (Boehringer Ingelheim International G.m.b.H., Germany; Boehringer Ingelheim Pharma G.m.b.H. & Co. K.-G.), assignee. Aminopteridinones as anticancer agents, their preparation, pharmaceutical compositions, and use in therapy. Application: WO patent 2005-EP8623, 2006018182. 20050809; 2006
  • Da Rocha Pitta I, Alves De Lima MDC, Lins GS, Barbe J, inventors; (Conselho Nacional De Desenvolvimento Cientifico E Tecnologico - Cnpq, Brazil), assignee. Acridine-thiazolidine (thiazacridine) and acridine-imidazolidine (imidazacridine) compounds with antitumor activity and their chemical synthesis. Application: WO patent 2003-BR128, 2004024058. 20030909; 2004
  • Marshall KM, Holden JA, Koller A, et al. AK37: the first pyridoacridine described capable of stabilizing the topoisomerase I cleavable complex. Anticancer Drugs 2004;159:907-13
  • Delfourne E, Kiss R, Le Corre L, et al. Synthesis and in vitro antitumor activity of ring C and D-substituted phenanthrolin-7-one derivatives, analogues of the marine pyridoacridine alkaloids ascididemin and meridine. Bioorg Med Chem 2004;12(15):3987-94
  • Delfourne E, Kiss R, Le Corre L, et al. Synthesis and in vitro antitumor activity of an isomer of the marine pyridoacridine alkaloid ascididemin and related compounds. Bioorg Med Chem 2003;11(20):4351-6
  • Chackal S, Houssin R, Pommery N, Henichart J-P. Design, synthesis and pharmacological evaluation of new anticancer fused pentacycles. J Enzym Inhib 2003;18(2):95-9
  • Delfourne E, Darro F, Bastide J, et al., inventors; (Laboratoire L. Lafon, Fr.), assignee. Ascididemin derivatives and their therapeutic applications. Application: WO patent 2000-FR2312, 2001012631. 20000811; 2001
  • Wesierska-Gadek J, Schloffer D, Gueorguieva M, et al. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitumor triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res 2004;64(13):4487-97
  • Lemke K, Poindessous V, Skladanowski A, Larsen AK. The antitumor triazoloacridone C-1305 is a topoisomerase II poison with unusual properties. Mol Pharmacol 2004;66(4):1035-42
  • Mazerska Z, Sowinski P, Konopa J. Molecular mechanism of the enzymatic oxidation investigated for imidazoacridinone antitumor drug, C-1311. Biochem Pharmacol 2003;66(9):1727-36
  • Wisniewska A, Chrapkowska A, Kot-Wasik A, et al. Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver. Acta Biochim Pol 2007;54(4):831-8
  • Koch M, Tillequin F, Michel S, et al., inventors; (Les Laboratoires Servier, Fr.; Centre National de la Recherche Scientifique (C.N.R.S.); Universite Rene Descartes Paris 5), assignee. Preparation of new cinnamate derivatives of tetrahydro-7H-pyrano(2,3-c)acridin-7-one pharmaceutical compositions containing them. Application: FR patent 2006-5494, 2902792. 20060621; 2007
  • Koch M, Tillequin F, Michel S, et al., inventors; (Les Laboratoires Servier, Fr.; Centre National De La Recherche Scientifique; University Rene Descartes Paris V), assignee. Preparation of benzo[b]pyrano[3,2-h]acridin-7-one cinnamate (acronycine) compounds as antitumor agents. Application: US patent 2005-313386, 2006135545. 20051221; 2006
  • Koch M, Tillequin F, Michel S, et al., inventors; (Les Laboratoires Servier, Fr.), assignee. Benzo[a]pyrano[3,2-h]acridin-7-one derivatives, structurally related to acronycine, processes for their preparation, and pharmaceutical compositions for treatment of cancer. Application: EP 2004-291568 patent 2004-291568, 1491544. 20040622; 2004
  • Koch M, Tillequin F, Michel S, et al., inventors; (Les Laboratoires Servier, Fr.), assignee. Benzo[b]pyrano[3,2-h]acridin-7-one compounds, their preparation, and their use in the treatment of cancer. Application: US patent 2003-627463, 2004063702. 20030726; 2004
  • Koch M, Tillequin F, Michel S, et al., inventors; (Les Laboratoires Servier S.A., Fr.), assignee. Method of preparation of new derivatives of benzo[b]pyrano[3,2-H]acridin-7-one and pharmaceutical compositions containing them. Application: FR 2001-9910 patent 2001-9910, 2827864. 20010725; 2003
  • Michel S, Gaslonde T, Tillequin F. Benzo[b]acronycine derivatives: a novel class of antitumor agents. Eur J Med Chem 2004;39(8):649-55
  • Tillequin F. Sarcomelicope alkaloids as leads for the discovery of new antitumor acronycine derivatives. Phytochem Rev 2003;1(3):355-68
  • Costes N, Le Deit H, Michel S, et al. J Med Chem 2000;43:2395-402
  • Seguin E, Tillequin F. Structure activity relationships and mechanism of action of antitumor benzo[b]acronycine antitumor agents. Ann Pharm Fr 2005;63(1):44-52
  • Mai HDT, Gaslonde T, Michel S, et al. Synthesis and cytotoxic and antitumor activity of 1,2-dihydroxy-1,2-dihydrobenzo[b]acronycine diacid hemiesters and carbamates. Chem Pharm Bull 2004;52(3):293-7
  • Mai HDT, Gaslonde T, Michel S, et al. Structure-Activity relationships and mechanism of action of antitumor Benzo[b]pyrano[3,2-h]acridin-7-one Acronycine Analogues. J Med Chem 2003;46(14):3072-82
  • David-Cordonnier M-H, Laine W, Lansiaux A, et al. Biochemistry 2002;41:9911-20
  • Halbrook JW, Kesicki EA, Burgess LE, et al., inventors; (Icos Corporation, USA), assignee. Preparation of xanthenone and acridinone DNA-PK inhibitors as cancer treatment potentiators. Application: WO 2004085418 patent 2004-US8459, 2004085418. 20040319; 2004
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408(6810):307-10
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004;10(8):789-99
  • Tang X, Zhu Y, Han L, et al. CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J Clin Invest 2007;117(12):3753-64
  • Wang W, Ho WC, Dicker DT, et al. Acridine derivatives activate p53 and induce tumor cell death through Bax. Cancer Biol 2005;4(8):893-8
  • El-Deiry WS, inventor (The Trustees of the University of Pennsylvania, USA), assignee. Acridine compound activation of p53 and use for the treatment of cancer. Application: WO patent 2007-US16122, 2008010984. 20070716; 2008
  • Gurova KV, Hill JE, Guo C, et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA 2005;102(48):17448-53
  • Burmester JK, inventor (Marshfield Clinic, USA), assignee. Acridine derivative, xanthene derivative, and thioxanthene derivative TGF-beta modulators and their therapeutic use. Application: WO patent 2006-US9755, 2006102102. 20060317; 2006
  • Denny WA. Tumor-activated prodrugs-A new approach to cancer therapy. Cancer Invest 2004;22(4):604-19
  • Tocher JH. Reductive activation of nitroheterocyclic compounds. Gen Pharmac 1997;28(4):485-7
  • Jaffar M, Williams KJ, Stratford IJ. Bioreductive and gene therapy approaches to hypoxic diseases. Adv Drug Deliver Rev 2001;53:217-28
  • Zhang Z, Tanabe K, Hatta H, Nishimoto S-I. Bioreduction activated prodrugs. Org Biomol Chem 2005;3(1905-1910)
  • Gniazdowski M, Szmigiero L. Nitacrine and its congeners: an overview. Gen Pharmac 1995;26(3):473-81
  • Hoffmann GR, Yin CC, Terry CE, et al. Frameshift mutations induced by 4 isomeric nitroacridines and their des-nitro counterpart in the lacZ reversion assay in Escherichia coli. Environ Mol Mutagen 2006;47(2):82-94
  • Mazerska Z. Products of metabolic activation of the antitumor drug ledakrin (nitacrine) in vitro. Chem Res Toxicol 2001;14(1):1-10
  • Narayanan R, Tiwari P, Inoa D, Ashok BT. Comparative analysis of mutagenic potency of 1-nitro-acridine derivatives. Life Sci 2005;77(18):2312-23
  • Konopa JK, Wysocka-Skrzela B, Tiwari R, inventors; (Pol.), assignee. 9-alkylamino–nitroacridine derivatives. Application: US patent 2001-934715, 2002099211. 20010822; 2002
  • Tadi K, Ashok BT, Chen Y, et al. Pre-clinical evaluation of 1-nitroacridine derived chemotherapeutic agent that has preferential cytotoxic activity towards prostate cancer. Cancer Biol Ther 2007;6(10):1632-7
  • Capps DB, Dunbar J, Kesten SR, et al. 2-(Aminoalkyl)-5-nitropyrazolo[3,4,5-kl]acridines, a New Class of Anticancer Agents. J Med Chem 1992;35:4770-8
  • Reid JM, Walker DL, Miller JK, et al. The metabolism of pyrazoloacridine (NSC 366140) by cytochromes p450 and flavin monooxygenase in human liver microsomes. Clin Cancer Res 2004;10(4):1471-80
  • Keshelava N, Tsao-Wei D, Reynolds CP. Pyrazoloacridine is active in multidrug-resistant neuroblastoma cell lines with nonfunctional p53. Clin Cancer Res 2003;9(9):3492-502
  • Dees CE, Rowinsky EK, Noe DA, et al. A phase I and pharmacologic study of pyrazoloacridine and cisplatin in patients with advanced cancer. Invest New Drug 2003;21(1):75-84
  • Galanis E, Buckner JC, Maurer MJ, et al. Phase I/II trial of pyrazoloacridine and carboplatin in patients with recurrent glioma: a north central cancer treatment group trial. Invest New Drug 2005;23(5):495-503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.