32
Views
0
CrossRef citations to date
0
Altmetric
Patent Evaluations

Digestive enzyme targeted polymer therapeutic: MIT WO2007103364

Pages 1085-1090 | Published online: 21 Aug 2008

Bibliography

  • Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 2006;5(10):821-34
  • Satchi-Fainaro R, Duncan R, Barnes CM. Polymer therapeutics for cancer: current status and future challenges. Adv Polym Sci 2006;193:1-65
  • Garnett MC. Targeted drug conjugates: principles and progress. Adv Drug Deliv Rev 2001;53(2):171-216
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6(9):688-701
  • Chabner BA, Amrein PC, Druker BJ, et al. Antineoplastic agents. 11th edition. In: Brunton LL, Lazo JS, Parker KL, editors, Goodman & Gilman's the pharmacological basis of therapeutics. McGraw-Hill: New York; 2006. xxiii, pp. 1315-1403
  • Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 1975;51(1):135-53
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Maeda H. The Enhanced Permeability and Retention (Epr) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-207
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-chemotherapy – mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46(12):6387-92
  • Jain RK. Barriers to drug-delivery in solid tumors. Sci Am 1994;271(1):58-65
  • Seymour LW, Duncan R, Strohalm J, Kopecek J. Effect of Molecular Weight (Mw) of N-(2-Hydroxypropyl)Methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res 1987;21(11):1341-58
  • Rennke HG, Venkatachalam MA. Glomerular-permeability of macromolecules – effect of molecular-configuration on the fractional clearance of uncharged dextran and neutral horseradish-peroxidase in the rat. J Clin Invest 1979;63(4):713-7
  • Duncan R. Drug polymer conjugates – potential for improved chemotherapy. Anticancer Drugs 1992;3(3):175-210
  • Chau Y, Tan FE, Langer R. Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase ii and matrix metalloproteinase Ix. Bioconjugate Chem 2004;15(4):931-41
  • Chau Y, Dang NM, Tan FE, Langer R. Investigation of targeting mechanism of new dextran-peptide-methotrexate conjugates using biodistribution study in matrix-metalloproteinase-overexpressing tumor xenograft model. J Pharm Sci 2006;95(3):542-51
  • Chau Y, Langer RS. Important factors in designing targeted delivery of cancer therapeutics via mmp-2 mediation. J Control Release 2003;91(1-2):239-40
  • Chau Y, Padera RF, Dang NM, Langer R. Antitumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models. Int J Cancer 2006;118(6):1519-26
  • Turk BE, Huang LL, Piro ET, Cantley LC. Determination of protease cleavage site motifs using mixture- based oriented peptide libraries. Nat Biotechnol 2001;19(7):661-7
  • Netzel-Arnett S, Mallya SK, Nagase H, et al. Continuously recording fluorescent assays optimized for five human matrix metalloproteinases. Anal Biochem 1991;195(1):86-92
  • Drug Innovation & Design, Inc. Tumor protease activated prodrugs of phosphoramide mustard analogs with toxification and detoxification functionalities. US5659061; 1997
  • Timar F, Botyanszki J, Suli-Vargha H, et al. The antiproliferative action of a melphalan hexapeptide with collagenase-cleavable site. Cancer Chemother Pharmacol 1998;41(4):292-8
  • Tauro JR, Gemeinhart RA. Matrix metalloprotease triggered local delivery of cancer chemotherapeutics. Bioconjugate Chem 2005;16(5):1133-9
  • Napier University. Tumour targeting prodrugds activated by metallo matrix proteinases. WO2002072620; 2002
  • Copeland RA, Albright CF, Combs AP, et al. Peptidase-cleavable, targeted antineoplastic drugs and their therapeutic use. US6844318; 2005
  • Boehringer Ingelheim Pharma. Enzyme-activated anti-tumor prodrug compounds. US6855689; 2005
  • Massova I, Fridman R, Mobashery S. Structural insights into the catalytic domains of human matrix metalloprotease-2 and human matrix metalloprotease-9: implications for substrate specificities. J Mol Model 1997;3(1):17-30
  • The United States Patent and Trademark Office. Available form: http://www.uspto.gov/main/search.html
  • Drobnik J, Kopecek J, Labsky J, et al. Enzymatic cleavage of side-chains of synthetic water-soluble polymers. makromolekulare chemie-macromolecular chemistry and physics 1976;177(10):2833-48
  • Ke S, Milas L, Charnsangavej C, et al. Potentiation of radioresponse by polymer-drug conjugates. J Control Release 2001;74(1-3):237-42
  • Shiah JG, Sun Y, Kopeckova P, et al. Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer- doxorubicin/mesochlorin E6;-Ov-Tl 16 antibody immunoconjugates. J Control Release 2001;74(1-3):249-53
  • Dubay RA, Rose PG, O'Malley DM, et al. Evaluation of concurrent and adjuvant carboplatin with radiation therapy for locally advanced cervical cancer. Gynecol Oncol 2004;94(1):121-4
  • Mehvar R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J Control Release 2000;69(1):1-25
  • Danhauser-Riedl S, Hausmann E, Schick HD, et al. Phase-I clinical and pharmacokinetic trial of Dextran Conjugated Doxorubicin (Ad-70, Dox-Oxd). Invest New Drugs 1993;11(2-3):187-95
  • Thoren L. The dextrans-clinical data. Devel Biol Stand 1981;48:157-167
  • Kline T, Torgov MY, Mendelsohn BS, et al. Novel antitumor prodrugs designed for activation by matrix metalloproteinases-2 and -9. Mol Pharm 2004;1(1):9-22
  • Vartak D, Gemeinhart RA. Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target 2007;15(1):1-21
  • Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006;6(3):227-39
  • Coussens LM, Fingleton B, Matrisian LM. Cancer therapy - matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295(5564):2387-92
  • Martin MD, Matrisian LM. The other side of mmps: protective roles in tumor progression. Cancer Metastasis Rev 2007;26(3-4):717-24
  • Bae M, Cho S, Song J, et al. Metalloprotease-specific poly(ethylene glycol) methyl ether-peptide-doxorubicin conjugate for targeting anticancer drug delivery based on angiogenesis. Drugs Exp Clin Res 2003;29(1):15-23
  • Byun Y, Kim S, Lee G, et al. Development of Mmps specific peg-peptide-doxorubicin conjugates based on angiogenesis. Eur J Cancer 2002;38:S130-1
  • Tauro JR, Gemeinhart RA. Extracellular protease activation of chemotherapeutics from hydrogel matrices: a new paradigm for local chemotherapy. Mol Pharmaceutics 2005;2(5):435-8
  • Tauro JR, Lee BS, Lateef SS, Gemeinhart RA. Matrix metalloprotease selective peptide substrates cleavage within hydrogel matrices for cancer chemotherapy activation. Peptides 2008: doi:10.1016/j.peptides.2008;.06.021
  • Mart RJ, Osborne RD, Stevens MM, Ulijn RV. Peptide-based stimuli-responsive biomaterials. Soft Matter 2006;2(10):822-35
  • Rawsterne RE, Gough JE, Rutten FJM, et al. Controlling protein retention on enzyme-responsive surfaces. Surf Interface Anal 2006;38(11):1505-11
  • Ulijn RV. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem 2006;16(23):2217-25
  • Thornton PD, McConnell G, Ulijn RV. Enzyme responsive polymer hydrogel beads. Chem Commun 2005;47:5913-5
  • Harris ED Jr, Krane SM. An endopeptidase from rheumatoid synovial tissue culture. Biochim Biophys Acta 1972;258(2):566-76
  • Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004;4(8):617-29
  • Kvanta A, Shen WY, Sarman S, et al. Matrix metalloproteinase (Mmp) expression in experimental choroidal neovascularization. Curr Eye Res 2000;21(3):684-90
  • Newby AC, Pauschinger M, Spinale FG. From tadpole tails to transgenic mice: metalloproteinases have brought about a metamorphosis in our understanding of cardiovascular disease. Cardiovasc Res 2006;69(3):559-561
  • Clark AW, Krekoski CA, Bou SS, et al. Increased gelatinase a (Mmp-2) and gelatinase B (Mmp-9) activities in human brain after focal ischemia. Neurosci Lett 1997;238(1-2):53-6
  • Kirkegaard T, Hansen A, Bruun E, Brynskov J. Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn's disease. Gut 2004;53(5):701-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.