65
Views
1
CrossRef citations to date
0
Altmetric
Review

The quest for treatment of cognitive impairment: AMPA and mGlu5 receptor modulators

Pages 999-1010 | Published online: 21 Aug 2008

Bibliography

  • Schoepp DD, Conn PJ. Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 1993;14:13-20
  • Knopfel T, Kuhn R, Allgeier H. Metabotropic glutamate receptors: novel targets for drug development. J Med Chem 1995;38:1417-26
  • Brabet I, Mary S, Boxkaert J, Pin JP. Phenylglycine derivatives discriminate between mGluR1- and mGluR5-mediated responses. Neuropharmacology 1995;34:895-903
  • Hayashi Y, Momiyama A, Takahashi T, et al. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 1993;366:687-90
  • Balschun D, Wetzel W. Inhibition of mGlu5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol Biochem Behav 2002;73:375-80
  • Liu SJ, Zukin RS. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 2007;30:126-34
  • Gouaux E. Structure and function of AMPA receptors. J Physiol 2003;554:249-53
  • Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Ann Rev Cell Dev Biol 2007;23:613-43
  • Kew JNC, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 2005;179:4-29
  • Santos SD, Carvalho AL, Caldeira MV, Durarte CB. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 2008 [Epub ahead of print]
  • Hayashi Y, Shi SH, Esteban JA, et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000;287:2262-7
  • Matsuo N, Reijmers L, Mayford M. Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science 2008;319:1104-8
  • Guire ES, Oh MC, Soderling TR, Derkach VA. Recuitment of calcium-permeable AMPA receptors during synaptic potentiation is regulated by CaM-kinase I. J Neurosci 2008;28:6000-9
  • Heine M, Groc L, Frischknecht R, et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 2008;320:201-5
  • Correia SS, Bassani S, Brown TC, et al. Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 2008;11:457-66
  • Griffiths S, Scott H, Glover C, et al. Expression of long-term depression underlies visual recognition memory. Cell 2008;58:186-94
  • Robbins T, Murphy ER. Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol Sci 2006;27:141-8
  • Day M, Langston R, Morris RG. Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature 2003;424:205-9
  • Armstrong DM, Ikonomovic MD, Sheffield R, et al. AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer's disease. Brain Res 1994;639:207-16
  • Chan SL, Griffin WS, Mattson MP. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res 1999;57:315-23
  • Chang EH, Savage MJ, Flood DG, et al. AMPA receptor downscaling at the onset of Alzheimer's disease pathology in double knockin mice. Proc Natl Acad Sci USA 2006;103:3410-5
  • Winters BD, Bussey TJ. Glutamate receptors in perihinla cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 2005;25:4243-51
  • Lee H-Y, Takamiya K, Han J-S, et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 2003;112:631-43
  • Dalton GL, Wang YT, Floresco S, Phillips AG. Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology 2008;33(10):2416-26
  • Parameshwaran K, Sims C, Kanju P, et al. Amyloid betapeptide Abeta(1–42) but not Abeta(1–40) attenuates synaptic AMPA receptor function. Synapse 2007;61:367-74
  • Lesne S, Ali C, Gabriel C, et al. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 2005;25:9367-77
  • Amadoro G, Ciotti MT, Costanzi M, et al. NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc Natl Acad Sci USA 2006;103:2892-7
  • Szegedi V, Juhasz G, Budai D, Penke B. Divergent effects of Abeta1-42 on ionotropic glutamate receptor-mediated responses in CA1 neurons in vivo. Brain Res 2005;1062:120-6
  • Shigemoto R, Mizuno N. Metabotropic glutamate receptors–immunocytochemical and in situ hybridization analysis. In: Ottersen OP, Storm-Mathisen J, editors, Handbook of chemical neuroanatomy. Elsevier: Amsterdam; 2000. p. 63-98
  • Naie K, Manahan-Vaughan D. Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: relevance for learning and memory formation. Cereb Cortex 2004;14:189-98
  • Naie K, Manahan-Vaughan D. Investigations of the protein synthesis dependency of mGluR-induced long-term depression in the dentate gyrus of freely moving rats. Neuropharmacology 2005;49:35-44
  • Naie K, Tsanov M, Manahan-Vaughan D. Group I metabotropic glutamate receptors enable two distinct forms of long-term depression in the rat dentate gyrus in vivo. Eur J Pharmacol 2007;25:3264-75
  • Zheng F, Gallagher JP. Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron 1992;9:163-72
  • Bashir ZI, Bortolotto ZA, Davies CH, et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 1993;363:347-50
  • Francesconi W, Cammalleri M, Sanna PP. The metabotropic glutamate receptor 5 is necessary for late-phase long-term potentiation in the hippocampal CA1 region. Brain Res 2004;1022:12-8
  • Wilson BM, Cox CL. Absence of metabolic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Proc Natl Acad Sci USA 2007;104:2454-9
  • Dolen G, Bear MF. Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J Physiol 2008;586:1503-8
  • Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 2002;22:9679-86
  • Nakamoto M, Nalavadi V, Epstein M, et al. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci USA 2007;104:15537-42
  • Choe ES, Shin EH, Wang JQ. Regulation of phosphorylation of NMDA receptor NR1 subunits in the rat neostriatum by group I metabotropic glutamate receptors in vivo. Neurosci Lett 2006;394:246-51
  • Awad H, Hubert GW, Smith Y, et al. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 2000;20:7871-9
  • Martin G, Nie Z, Siggins GR. Metabotropic glutamate receptors regulate N-methyl-D-aspartate-mediated synaptic transmission in nucleus accumbens. J Neurophysiol 1997;78:3028-38
  • Pisani A, Gubellini P, Bonsi P, et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 2001;106:579-87
  • Gravius A, Barberi C, Schafer D, et al. The role of group I metabotropic glutamate receptors in acquisition and expression of contextual and auditory fear conditioning in rats – A comparison. Neuropharmacology 2006;51:1146-55
  • Rodrigues SM, Bauer EP, Farb CR, et al. The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J Neurosci 2002;22:5219-29
  • Schulz B, Fendt M, Gasparini F, et al. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 2001;41:1-7
  • Gravius A, Pietraszek M, Schäfer D, et al. Effects of mGlu1 and mGlu5 receptor antagonists on negatively reinforced learning. Behav Pharmacol 2005;16:113-21
  • Simonyi A, Serfozo P, Shelat PB, et al. Differential roles of hippocampal metabotropic glutamate receptors 1 and 5 in inhibitory avoidance learning Neurobiol Learn Mem 2007;88:305-11
  • Schachtman TR, Bills C, Ghinescu R, et al. MPEP, a selective metabotropic glutamate receptor 5 antagonist, attenuates conditioned taste aversion in rats. Behav Brain Res 2003;141:177-82
  • Homayoun H, Stefani MR, Adams BW, et al. Functional interaction between NMDA and mGluR5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 2004;29:1259-69
  • Manahan-Vaughan D, Braunewell KH. The metabotropic glutamate receptor, mGluR5, is a key determinant of good and bad spatial learning performance and hippocampal synaptic plasticity. Cereb Cortex 2005;15:1703-13
  • Car H, Stefaniuk R, Wisniewsaka R. Effect of MPEP in Morris water maze in adult and old rats. Pharmacol Rep 2007;59:88-93
  • Ballard TM, Woolley ML, Prinssen E, et al. The effect of the mGluR5 receptor antagonists MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology 2005;179:218-29
  • Petersen S, Bomme C, Baastrup C, et al. Differential effects of mGluR1 and mGlu5 antagonism on spatial learning in rats. Pharmacol Biochem Behav 2002;73:381-9
  • Lu YM, Jia Z, Janus C, et al. lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 1997;17:5196-205
  • Yeh T-H, Wang H-L. Global ischemia downregulates the function of metabotropic glutamate receptor subtype 5 in hippocampal CA1 pyramidal neurons. Mol Cell Neurosci 2005;29:484-92
  • Meli E, Picca R, Attucci S, et al. Activation of mGlu1 but not mGlu5 metabotropic glutamate receptors contributes to postischemic neuronal injury in vitro and in vivo. Pharmacol Biochem Behav 2002;73:439-46
  • Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci 2004;27:370-7
  • Antar LN, Bassell GJ. Sunrise at the synapse: the FMRP mRNP shaping the synaptic interface. Neuron 2003;37:555-8
  • Godfraind JM, Reyniers E, De Boulle K, et al. Long-term potentiation in the hippocampus of fragile X knockout mice. Am J Med Genet 1996;64:246-51
  • Paradee W, Melikian HE, Rasmussen DL, et al. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 1999;94:185-92
  • Qin M, Kang J, Burlin TV, et al. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J Neurosci 2005;25:5087-95
  • Pfeiffer BE, Huber KM. Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. J Neurosci 2007;27:3120-30
  • Muddashetty RS, Kelic S, Gross C, et al. Dyregualted metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 2007;27:5338-48
  • Ango F, Prezeau L, Muller T, et al. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 2001;411:962-5
  • Melchiorri D, Cappuccio I, Ciceroni C, et al. Metabotropic glutamate receptors in stem/progenitor cells. Neuropharmacology 2007;53:473-80
  • Giorgi-Gerevini V, Melchiorri D, Battaglia G, et al. Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells. Cell Death Differ 2005;12:1124-33
  • Chenard BL, Welch WM, Reinhold AR. Thieno-pyrimidin-4-one AMPA antagonists. US921764; 2005
  • Arai AC, Kessler M, Rogers G, Lynch G. Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol Pharmacol 2000;58:802-13
  • Lebrun C, Pilliere E, Lestage P. Effects of S 18986-1, a novel cognitive enhancer, on memory performances in an object recognition task in rats. Eur J Pharmacol 2000;401:205-12
  • Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 2007;8:101-13
  • Lynch G, Gall CM. Ampakines and the threshold path to cognitive enhancement. Trends Neurosci 2006;29:554-62
  • Shimazaki T, Kaku A, Chaki S. Blockade of the metabotropic glutamate 2/3 receptors enhances social memory via the AMPA receptor in rats. Eur J Pharmacol 2007;575:94-7
  • Rosi S, Giovannini MG, Lestage PJ, et al. S 18986, a positive modulator of AMPA receptors with cognition-enhancing properties, increases ACh release in the hippocampus of young and aged rat. Neurosci Lett 2004;361:120-3
  • Zushida K, Sakurai M, Wada K, Sekiguchi M. Facilitation of extinction learning for contextual fear memory by PEPA: a potentiator of AMPA receptors. J Neurosci 2007;27:158-66
  • Foucher E, Thominot G, Lecouve J-P, et al. Process for the synthesis of (3aS)-5,5-dioxo-2,3,3a,4-tetrahydro-1H-pyrrolo[2,1-c][1,2,4] benzothiadiazine. US6518422; 2003
  • Hess US, Whalen SP, Sandoval LM, et al. Ampakines reduce methamphetamine – driven rotation and activate neocortex in a regionally selective fashion. Neuroscience 2003;121:509-21
  • Garcia MM, Anderson AT, Edwards R, Harlan RE. Morphine induction of c-fos expression in the rat forebrain through glutamatergic mechanisms: role of non-N-methyl-D-aspartate receptors. Neuroscience 2003;119:787-94
  • Rex CS, Lauterborn JC, Lin CY, et al. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J Neurophysiol 2006;96:677-85
  • Lynch G, Rex CS, Chen LY, Gail CM. The substrates of memory: defects, treatments, and enhancement. Eur J Pharmacol 2008;585:2-13
  • Rex CS, Lin CY, Kramar EA, et al. Brain-derived neurotrophic factor promotes LTP-related cytoskeletal changes in adult hippocampus. J Neurosci 2007;27:3017-29
  • Johansen Chaudhary A, Verdoom TA. Interactions among GYKI-52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors. Mol Pharmacol 1995;48:946-55
  • Fucile S, Miledi R, Eusebi F. Effects of cyclothiazide on GluR1/AMPA receptors. Proc Natl Acad Sci USA 2006;103:2943-7
  • Gouliaev AH, Larsen M, Varming T, et al. Compounds and their use as positive AMPA receptor modulators. US7235548; 2007
  • Konkoy CS, Fick DB, Cai SX, et al. Substituted 5-oxo-5, 6, 7, 8-tetrahydro-4H-1-benzopyrans. US6800657; 2004
  • Rogers GA, Marrs CM. Benzofurazan compounds which enhance AMPA receptor activity. US6730677; 2004
  • Konkoy CS, Fick DB, Cai SX, et al. Substituted 5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyrans and benzothiopyrans and the use thereof as potentiators of AMPA. US6680332; 2004
  • Grove SJA, Zhang MQ, Shahid M, et al. Benzoxazepines derivatives and their use as AMPA receptor stimulators. US7307073; 2007
  • Desos P, Cordi A, Lestage P, et al. Benzothiadiazine compounds. US7268130; 2007
  • Gouliaev AH, Larsen M, Varming T, et al. Compounds and their use as positive AMPA receptor modulators. US7235548; 2007
  • Grove SJA, Adam-Worall J, Zhang MG, et al. (Pyrido/thieno)-[f]-oxazepine-5-one derivatives. US7345036; 2008
  • Sekiguchi M, Nishikawa K, Aoki S, Wada K. A desensitization selective potentiator of AMPA-type glutamate receptors. Br J Pharmacol 2002;136:1033-41
  • Szydlowska K, Kaminska B, Baude A, et al. Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo. Eur J Pharmacol 2007;554:18-29
  • Chappell AS, Gonzales C, Williams J, et al. AMPA potentiator treatment of cognitive deficits in Alzheimer's disease. Neurology 2007;68:1008-12
  • Hampson RE, Rogers G, Lynch G, Deadwyler SA. Facilitative effects of the ampakine CX516 on short-term memory in rats: enhancement of delayed-nonmatch-to-sample performance. J Neurosci 1998;8:2740-7
  • Goff DC, Lamberti JS, Leon AC, et al. A placebo-controlled add-on trial of the Ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 2008;33:465-72
  • Wesensten NJ, Reichardt RM, Balkin TJ. Ampakine (CX717) effects on performance and alertness during simulated night shift work. Aviat Space Environ Med 2007;78:937-43
  • Jacob CP, Koutsilieri E, Bartl J, et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer's disease. J Alzheimers Dis 2007;11:97-116
  • Upasani R, Cai SX. Substituted quinazolines and analogs and the use thereof. US6765006; 2004
  • Chenard BL, Welch WM, Reinhold AR. Quinazolin-4-one AMPA antagonists. US6627755; 2003
  • Ritz M, Micale N, Grasso S, Niu L. Mechanism of inhibition of the GluR2 AMPA receptor channel opening by 2,3-benzodiazepine derivatives. Biochemistry 2008;47:1061-9
  • Mueller AL, Moe ST. Compounds active at a novel site on receptor-operated calcium channels useful for treatment of neurological disorders and diseases. US7268166; 2007
  • Nicoll RA, Tomita S, Bredt DS. Auxiliary subunits assist AMPA-type glutamate receptors. Science 2006;311:1253-6
  • Milstein AD, Zhou W, Karimzadegan S, et al. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 2007;55:905-18
  • Kyle D, Sun Q. 1,2,5-Thiadiazol-3-yl-piperazine therapeutic agents useful for treating pain, depression and anxiety. US7342017; 2008
  • Kyle D, Sun Q, Tafesse L, et al. Therapeutic agents useful for treating pain. US7279493; 2007
  • Kyle D, Sun Q. Therapeutic agents useful for treating pain. US7262194; 2007
  • Kyle D, Sun Q. Therapeutic agents useful for treating pain. US7256193; 2007
  • Sun Q, Zhou XM. Therapeutic agents useful for treating pain. US7157462; 2007
  • Walker K, Bowes M, Panesar M, et al. Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function. I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology 2000;40:1-9
  • Dogrul A, Ossipov MH, Malan TP, Porreca F. Peripheral and spinal antihyperalgesic activity of SIB-1757, a metabotropic glutamate receptor (mGLUR5;) antagonist, in experimental neuropathic pain in rats. Neurosci Lett 2000;292:115-8
  • Tatarczynska E, Klodzinska A, Chojnacka-Wójcik E, et al. Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 2001;132:1423-30
  • Spooren WPJM, Gasparini F, Salt TE, Kuhn R. Novel allosteric antagonists shed light on mGlu5 receptors and CNS disorders. Trends Pharmacol Sci 2001;22:331-7
  • Kim CH, Braud S, Isaac JTR, Roche KW. Protein kinase C phosphorylation of the metabotropic glutamate receptor mGluR5 on serine 839 regulates Ca2+ oscillations. J Biol Chem 2005;280:25409-15
  • Bach P, Isaac M, Slassi A. Metabotropic glutamate receptor 5 modulators and their potential therapeutic applications. Expert Opin Ther Patents 2007;17:371-84
  • Anne-Sophie B, Beatrice B, Emmanuel LP, et al. Modulateurs allosteriques de recepteurs glutamate metabotropiques. WO2005044797; 2005
  • Bolea C, Mutel V, Rocher JP, et al. New aminopyridine derivatives are mGluR5 antagonists – useful for treating CNS disorders. WO2004078728; 2004
  • Chen Y, Goudet C, Pin J-P, Conn PJ. N-{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors. Mol Pharmacol 2008;73:909-18
  • O'Brien JA, Lemaire W, Chen TB, et al. A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol Pharmacol 2003;64:731-40
  • Balschun D, Zuschratter W, Wetzel W. Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 2006;142:691-702
  • Chen M-H, Chiu P-H, Sou J-H, Chen H-H. Attenuation of ketamine-evoked behavioral responses by mGluR5 positive modulators in mice. Psychopharmacology 2008;198:141-8
  • Balschun D, Zuschratter W, Wetzel W. Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 2006;142:691-702
  • Lecourtier L, Homayoun H, Tamagnan G, et al. Positive allosteric modulation of metabotropic glutamate 5 (mGlu5) receptors reverses N-methyl-D-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Biol Psychiatry 2007;62:739-46
  • Pizzi M, Sarnico I, Boroni F, et al. NF-kappaB factor c-Rel mediates neuroprotection elicited by mGlu5 receptor agonists against amyloid beta-peptide toxicity. Cell Death Differ 2005;12:761-72
  • Lee RK, Jimenez J, Cox AJ, Wurtman RJ. Metabotropic glutamate receptors regulate APP processing in hippocampal neurons and cortical astrocytes derived from fetal rats. Ann NY Acad Sci 1996;777:338-43
  • Berry-Kravis E, Krause SE, Block SS, et al. Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: a controlled trial. J Child Adolesc Psychopharmacol 2006;16:525-40
  • Blanchard BJ, Chen A, Rozeboom LM, et al. Efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci USA 2004;101:14326-32
  • Louzada PR Jr, Paula Lima AC, De Mello FG, Ferreira ST. Dual role of glutamatergic neurotransmission on amyloid beta(1–42) aggregation and neurotoxicity in embryonic avian retina. Neurosci Lett 2001;301:59-63
  • Weiss JH, Yin HZ, Choi DW. Basal forebrain cholinergic neurons are selectively vulnerable to AMPA/kainate receptor-mediated neurotoxicity. Neuroscience 1994;60:659-64
  • Koros E, Rosenbrock H, Birk G, et al. The selective mGlu5 receptor antagonist MTEP, similar to NMDA receptor antagonists, induces social isolation in rats. Neuropsychopharmacology 2007;32:562-76

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.