4
Views
1
CrossRef citations to date
0
Altmetric
Antimicrobials

Overview: Proteins and Peptides that have Activity Against the Human Immunodeficiency Virus (HIV)

&
Pages 1613-1639 | Published online: 02 Mar 2011

References to Primary Literature

  • Centers for Disease Control (CDC) Morbid. Mortal. Wky. Rep. 1981 30 250–252.
  • Barre-Sinoussi, F Chermann, JC Rey, F Nugeyre, MT Chamaret, S Gruest, J Dauguet, C Axler-Blin, C Vezinet-Brun, F Rouzioux, C Rozenbaum, W Montagnier, L Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983 220 868–871.
  • Popovic, M Sarangadharan, MG Read, E Gallo, RC Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 1984 224 497–500.
  • AIDS Weekly July 13 1992 10.
  • Mervis, RJ Ahmad, N Lillehoj, EP Raum, MG Salazar, FHR Chan, HW Venkatesan, S The gag gene products of human immunodeficiency virus type 1: Alignment within the gag open reading frame, identification of post-translatlonal modifications, and evidence for alternative gag precursors. J. Virol. 1988 62 3993–4002.
  • Jacks, T Power, MD Masiarz, FR Luciw, PA Barr, PJ Varmus, HE Characterization of ribosomal frame-shifting in HIV-1 gag-pol expression. Nature 1988 331 280–283.
  • Wilson, W Braddock, M Adams, SE Rathjen, PD Kinsman, SM Kingsman, AJ HIV expression strategies: Ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell 1988 55 1159–1169.
  • Kohl, NE Emini, EA Shleif, WA Davis, LJ Heimbach, JC Dixon, RAF Scolnick, EM Sigal, IS Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 1988 85 4686–4690.
  • Gottlinger, HG Sodroski, JG Haseltine, WA Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1989 86 5781–5785.
  • Peng, C Ho, BK Chang, TW Chang, NT Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J. Virol. 1989 63 2550–2556.
  • Navia, MA Fitzgerald, PMD McKeever, BM Leu, C-T Heimbach, JC Herber, WK Sigal, IS Darke, PL Springer, JP Three-dimensional structure of aspartyl protease from human immunodeficiency virus HTV-1. Nature 1989 337 615–620.
  • Weber, IT Miller, M Jaskolski, M Leis, J Skalka, AM Wlodawer, A Molecular modeling of the HIV-1 protease and its substrate binding site. Science 1989 243 928–931.
  • Wlodawer, A Miller, M Jaskolski, M Sathyanarayana, BK Baldwin, E Wever, IT Selk, LM Clawson, L Schneider, J Kent, SBH Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science 1989 245 616–621.
  • Fennie, C Lasky, LA Model for intracellular folding of the human immunodeficiency virus type 1 gp120. J. Virol. 1989 63 639–646.
  • Willey, RL Bonifacino, JS Potts, BJ Martin, MA Klausner, RD Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA 1989 85 9580–9584.
  • Pinter, A Honnen, WJ Tilley, SA Bona, C Zaghouani, H Gorny, MK Zolla-Pazner, S Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J. Virol. 1989 63 2674–2679.
  • Schawaller, M Smith, GE Skehel, JJ Wiley, DC Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV. Virol. 1989 172 367–369.
  • Cohen, EA Terwilliger, EF Sodroski, JG Haseltine, WA Identification of a protein encoded by the vpu gene of HIV-1. Nature 1988 334 532–534.
  • Strebel, K Klimkait, T Martin, MA A Novel gene of HIV-1, vpu and its 16 kilodalton product. Science 1988 241 1221–1223.
  • Matsuda, Z Chou, M-J Matsuda, M Huang, J-H Chen, Y-M Redfield, R Mayer, K Essex, M Lee, T-H Human immunodeficiency virus type 1 has an additional coding sequence in the central region of the genome. Proc. Natl. Acad. Sci. USA 1988 85 6968–6972.
  • Lee, T-H Coligan, JE Allan, JS McLane, MF Groopman, JE Essex, M A new HTLV-III/LAV protein encoded by a gene found in cytopathic retroviruses. Science 1986 231 1546–1549.
  • Fisher, AG Ensoli, B Ivanoff, L Chamberlain, M Petteway, S Ratner, L Gallo, RC Wong-Staal, F The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science 1987 237 888–893.
  • Strebel, K Daugherty, D Clouse, K Cohen, D Folks, T Martin, M The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 1987 328 728–730.
  • Cohen, EA Lu, Y Gottlinger, H Dehni, G Jalinoos, Y Sodroski, JG Haseltine, WA The T open reading frame of the human immunodeficiency virus type 1. J. AIDS 1990 3 601–608.
  • Cohen, EA Dehni, G Sodroski, JG Haseltine, WA Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J. Virol. 1990 64 3097–3099.
  • Guy, B Kieny, MP Riviere, Y Le Peuch, C Dott, K Girard, M Montagnier, L Lecocq, J-P HIV F/3′of encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 1987 330 266–269.
  • Ahmad, N Venkatesan, S Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science 1988 241 1481–1485.
  • Kaminchik, J Bashan, N Pinchasi, D Sarver, N Johnston, MI Fischer, M Yavin, Z Gorecki, M Panet, A Expression and biochemical characterization of human immunodeficiency virus type 1 nef gene product. J. Virol. 1990 64 3447–3454.
  • Kim, S Ikeuchi, K Byrn, R Groopman, J Baltimore, D Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1989 86 9544–9548.
  • Viscidi, RP Mayur, K Lederman, HM Frankel, AD Inhibition of antigen-induced lymphocyte proliferation by Tat protein form HIV-1. Science 1989 246 1606–1608.
  • Ensoli, B Barillari, G Salahuddin, Z Gallo, RC Wong-Staal, F Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 1990 345 84–86.
  • Gentz, R Chen, C-H Rosen, CA Bioassay for trans-activation using purified human immunodeficiency virus tat-encoded protein: Trans-activation requires mRNA synthesis. Proc. Natl. Acad. Sci. USA 1989 86 821–824.
  • Frankel, AD Pabo, CO Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 1988 55 1189–1193.
  • Kowalski, M Potz, J Basiripour, L Dorfman, T Goh, WC Terwilliger, E Dayton, A Rosen, C Haseltine, W Sodroski, J Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 1987 237 1351–1355.
  • Lasky, LA Nakamura, G Smith, DH Fennie, C Shimasaki, C Patzer, E Berman, P Gregory, T Capon, DJ Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 1987 50 975–985.
  • Clayton, L Hussey, RE Steinbrich, R Ramachandran, H Husain, Y Reinherz, EL Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 1988 335 363–366.
  • Jameson, BA Rao, PE Kong, LI Hahn, BH Shaw, GM Hood, LE Kent, SBH Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein. Science 1988 240 1335–1339.
  • Landau, NR Warton, M Littman, DR The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 1988 334 159–162.
  • Peterson, A Seed, B Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 1988 54 65–72.
  • Katunuma, N Fukutomi, A Kido, H A serine protease in T4-positive lymphocyte membrane, tryptase TL2, is a novel binding protein of HIV-1 gp120. Joint meeting American Society for Biochemistry and Molecular Biology/Biophysical Society Houston, Texas Feb. 9–13 1992.
  • Gallaher, WR Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 1987 50 327–328.
  • Felser, JM Klimkait, T Silver, J A syncytia assay for human immunodeficiency virus type 1 (HIV-1) envelope protein and its use in studying HIV-1 mutations. Virol. 1989 170 566–570.
  • Freed, EO Myers, DJ Risser, R Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc. Natl. Acad. Sci. USA 1990 87 4650–4654.
  • Maddon, PJ Dalgleish, AG McDougal, JS Clapham, PR Weiss, RA Axel, R The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986 47 333–348.
  • Stein, BS Gowda, SD Lifson, JD Penhallow, RC Bensch, KG Engleman, EG pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 1987 49 659–668.
  • McClure, M Marsh, M Weiss, RA Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J. 1988 7 513–518.
  • Bedinger, P Moriaty, A von Borstel, RC II Donovan, NJ Steimer, KS Littman, DR Internalization of the human immunodeficiency virus does not require the cytoplasmic domain of CD4. Nature 1988 334 162–164.
  • Kim, S Byrn, R Groopman, J Baltimore, D Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression. J. Virol. 1989 63 3708–3713.
  • Zack, JA Arrigo, SJ Weitsman, SR Go, AS Haislip, A Chen, ISY HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell 1990 61 213–222.
  • Stevenson, M Stanwick, TL Dempsey, MP Lamonica, CA HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990 9 1551–1560.
  • Bukrinsky, MI Stanwick, TL Dempsey, MP Stevenson, M Quiescent T lymphocytes as an inducible virus reservoir in HIV infection. Science 1991 254 423–427.
  • Stevenson, M Haggerty, S Lamonica, CA Meier, CM Welch, S-K Wasiak, AJ Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. J. Virol. 1990 64 2421–2425.
  • Brown, PO Bowerman, B Varmus, HE Bishop, JM Retroviral integration: Structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc. Natl. Acad. Sci. USA 1989 86 2525–2529.
  • Farnet, CM Haseltine, WA Integration of human immunodeficiency virus type 1 DNA in vitro. Proc. Natl. Acad. Sci. USA 1990 87 4164–4168.
  • Ellison, V Abrams, H Roe, T Lifson, J Brown, P Human immunodeficiency virus integration in a cell-free system. J. Virol. 1990 64 2711–2715.
  • Takayama, H Bradley, G Lai, PK Tamura, Y Sakagami, H Tanaka, A Nonoyama, M Inhibition of human immunodeficiency virus forward and reverse transcription by PC6, a natural product from cones of pine trees. AIDS Res. Human Retroviruses 1991 7 349–357.
  • Schwartz, S Felber, BK Benko, DM Fenyo, E-M Pavlakis, GN Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J. Virol. 1990 64 2519–2529.
  • Garcia, JA Wu, FK Mitsuyasu, R Gaynor, RB Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J. 1987 6 3761–3770.
  • Fisher, AG Feinberg, MB Josephs, SF Harper, ME Marselle, LM Reyes, G Gonda, MA Aldovini, A Debouk, C Gallo, RC Wong-Staal, F The trans-activator gene of HTLV-III is essential for virus replication. Nature 1986 320 367–371.
  • Dayton, AI Sodroski, JG Rosen, CA Goh, WC Haseltine, WA The trans-activator gene of the human T lymphotropic virus type III is required for replication. Cell 1986 44 941–947.
  • Rubin, S Perkins, A Purcell, R Joung, K Sia, R Burghoff, R Haseltine, W Rosen, CA Structural and functional characterization of human immunodeficiency virus tat protein. J. Virol. 1989 63 1–8.
  • Hauber, J Perkins, A Heimer, EP Cullen, BR Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc. Natl. Acad. Sci USA 1987 84 6364–6368.
  • Hauber, J Malim, MH Cullen, BR Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J. Virol. 1989 63 1181–1187.
  • Feinberg, MB Jarrett, RF Aldovini, A Gallo, RC Wong-Staal, F HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 1986 46 807–817.
  • Hauber, J Cullun, BR Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 1988 62 673–679.
  • Jacobovits, A Smith, DH Jacobovits, EB Capon, DJ A discrete element 3′ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator. Mol. Cell Biol. 1988 8 2555–2561.
  • Selby, MJ Bain, ES Luciw, PA Peterlin, BM Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Gene Dev. 1989 3 547–558.
  • Roy, S Delling, U Chen, C-M Rosen, CA Sonenberg, N A bulge structure in HIV-1 TAR RNA is required for tat binding and tat-mediated trans-activation. Gene Dev. 1990 4 1365–1373.
  • Muesing, MA Smith, DH Capon, DJ Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 1987 48 691–701.
  • Berkhout, B Silverman, RH Jeang, K-T Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 1989 59 273–282.
  • Selby, MJ Peterlin, BM Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 1990 62 769–776.
  • Kato, H Suminmoto, H Pognonec, P Chen, C-H Rosen, CA Roeder, RG HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Gene Dev. 1992 6 655–666.
  • Berkhout, B Gatignol, A Rabson, AB Jeang, K-T Tar-independent activation of the HIV-LTR: Evidence that Tat requires specific regions of the promoter. Cell 1990 62 757–767.
  • Nelbock, P Dillon, PJ Perkins, A Rosen, CA A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 1990 248 1650–1653.
  • Rosen, CA Sodroski, JG Haseltine, WA The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 1985 41 813–823.
  • Siekevitz, M Josephs, SF Dukovich, M Peffer, N Wong-Staal, F Greene, WC Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-1. Science 1987 238 1575–1578.
  • Horvat, RT Wood, C HIV promoter activity in primary antigen-specific human T lymphocytes. J. Immunol. 1989 143 2745–2751.
  • Bohan, CA Robinson, RA Luciw, PA Srinivasan, A Mutational analysis of sodium butyrate inducible elements in the human immunodeficiency virus type I long terminal repeat. Virol. 1989 172 578–583.
  • Lu, Y Stenzel, M Sodroski, JG Haseltine, WA Effects of long terminal repeat mutations on human immunodeficiency virus type I replication. J. Virol. 1989 63 4115–4119.
  • Franza, BR Jr Rauscher, FJ III Josephs, SF Curran, T The fos complex and fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science 1988 239 1150–1153.
  • Shaw, JP Ultz, PJ Durand, DB Toole, JJ Emmel, EA Crabtree, GR Identification of a putative regulator of early T cell activation genes. Science 1988 241 202–205.
  • Lu, Y Touzjian, N Stenzel, M Dorfman, T Sodroski, JG Haseltine, WA Identification of cis-acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. J. Virol. 1990 64 5226–5229.
  • Sawadogo, M Roeder, RG Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 1985 43 165–175.
  • Sumrada, RA Cooper, TG Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl. Acad. Sci. USA 1987 84 3997–4001.
  • Sadaie, MR Benaissa, ZN Cullen, BR Wong-Staal, F Human immunodeficiency virus type 1 rev protein as a negative trans-regulator. DNA 1989 8 669–674.
  • Kawasami, K Schfidereit, C Roeder, RG Identification and purification of a human immunoglobulin-enhancer-binding protein (nf-kB) that activates transcription from human immunodeficiency virus type 1 promoter in vitro. Proc. Natl. Acad. Sci. USA 1988 85 4700–4704.
  • Franza, BR Jr Josephs, SF Gilman, MZ Ryan, W Clarkson, B Characterization of cellular proteins recognizing the HIV enhancer using a microscale DNA-affinity precipitation assay. Nature 1987 330 391–395.
  • Wu, FK Barcia, JA Harrich, D Gaynor, RB Purification of the human immunodeficiency virus type 1 enhancer and TAR binding proteins EBP-1 and UBP-1. EMBO J. 1988 7 2117–2129.
  • Nabel, G Baltimore, D An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987 326 711–713.
  • Dinter, H Chiu, R Imagawa, M Karin, M Jones, KA In vitro activation of the HIV-1 enhancer in extracts from cells treated with a phorbol ester tumor promoter. EMBO J 1987 6 4067–4071.
  • Verdin, E Becker, N Bex, F Droogmans, L Burney, A Identification and Characterization of an enhancer in the coding region of the genome of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1990 87 4874–4877.
  • Jones, KA Kadonaga, JT Luciw, PA Tjian, R Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 1986 232 755–759.
  • Jones, KA Luciw, PA Duchange, N Structural arrangement of transcription control domains within the 5′-untranslated leader regions of the HIV-1 and HIV-2 promoters. Gene Dev. 1988 2 1101–1114.
  • Sharer, LR Pathology of HIV-1 infection of the central nervous system: A review. J. Neuropath. Expt. Neurol. 1992 51 3–11.
  • Koyanagi, Y O'Brien, WA Zhao, JQ Golde, DW Gasson, JC Chen, ISY Cytokines alter production of HIV-1 from primary mononuclear phagocytes. Science 1988 241 1673–1675.
  • Folks, TM Justement, J Kinter, AL Dinarello, CA Fauci, AS Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 1987 238 800–802.
  • Poli, G Bressler, P Kinter, A Duh, E Timmer, WC Rabson, A Justement, JS Stanley, S Fauci, AS Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J. Exp. Med. 1990 172 151–158.
  • Folks, TM Clouse, KA Justement, J Rabson, AR Duh, EJ Kehrl, JH Fauci, AS Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc. Natl. Acad. Sci. USA 1989 86 2365–2368.
  • Duh, EJ Maury, WJ Folks, TM Fauci, AS Rabson, AR Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kB sites in the long terminal repeat. Proc. Natl. Acad. Sci. USA 1989 86 5974–5978.
  • Matsuyama, T Hamamoto, Y Soma, G-I Mizuno, D Yamamoto, N Kobayashi, N Cytocidal effect of tumor necrosis factor on cells chronically infected with human immunodeficiency virus (HIV): Enhancement of HIV replication. J. Virol. 1989 63 2504–2509.
  • Poli, G Kinter, A Justement, JS Kehrl, JH Bressler, P Stanley, S Fauci, AS Tumor necrosis alpha functions in an autocrine manner in the induction of HIV expression. Proc. Natl. Acad. Sci. USA 1990 87 782–785.
  • Poli, G Kinter, AL Justement, JS Bressler, P Kehrl, JH Fauci, AS Transforming growth factor beta suppresses human immunodeficiency virus expression and replication in infected cells of the monocytic/macrophage lineage. J. Exp. Med. 1991 173 589–597.
  • Ho, DD Hartshorn, KL Rota, TR Andrews, CA Kaplan, JC Schooley, RT Hirsch, MS Recombinant human interferon alpha-A suppresses HTLV-IH replication in vitro. Lancet 1985 1 602–604.
  • Montefiori, DC Mitchell, WM Antiviral activity of mismatched double-stranded RNA against human immunodeficiency virus in vitro. Proc. Natl. Acad. Sci. USA 1987 84 3985–3989.
  • Nakashima, H Yoshida, T Harada, SM Yamamoto, N Recombinant human interferon gamma suppresses HTLV-III replication in vitro. Int. J. Cancer 1986 38 433–436.
  • Tamura, Y Lai, PK Bradley, WG Konno, K Tanaka, A Nonoyama, M A soluble factor induced by an extract from pinus parviflora Sieb et Zucc can inhibit the replication of human immunodeficiency virus in vitro. Proc. Natl. Acad. Sci. USA 1991 88 2249–2253.
  • Lai, PK Tamura, Y Bradley, WG Donovan, J Tanaka, A Nonoyama, M Cytokine regulation of the human immunodeficiency virus (HIV). Int. J. Immunopharmac. 1991 13 Suppl 1 55–61.
  • Poli, G Kinter, AL Justement, JS Bressler, P Kehrl, JH Fauci, AS Retinoic acid mimics transforming growth factor β in the regulation of human immunodeficiency virus expression in monocytic cells. Proc. Natl. Acad. Sci. USA 1992 89 2689–2693.
  • Schreck, R Rieber, P Baeuerle, PA Reactive oxygen intermediates as apparent widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J. 1991 10 2247–2258.
  • Baeuerle, PA Baltimore, D The physiology of the NF-kB transcription factor Molecular Aspects of Cellular Recognition Cohen, P, Foulkes, JG Elsevier Biomedical Amsterdam 1991 Vol. 6 409–432 Humoral Control Regulation of Gene Transcription.
  • Braddock, M Chambers, A Wilson, W Esnouf, MP Adams, SE Kingsman, AJ Kingsman, SM HIV-1 Tat ‘activates’ presynthesized RNA in the nucleus. Cell 1989 58 269–279.
  • Malim, MH Hauber, J Le, S-Y Maizel, JV Cullen, BR The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 1989 338 254–257.
  • Felber, BK Hadzopoulou-Cladaras, M Cladaras, C Copeland, T Pavlakis, GN rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc. Natl. Acad. Sci. USA 1989 86 1495–1499.
  • Emerman, M Vazeux, R Peden, K The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 1989 57 1155–1165.
  • Hammarskjold, ML Heimer, J Hammarskjold, B Sangwan, I Albert, L Rekosh, D Regulation of human immunodeficiency virus env expression by the rev gene product. J. Virol. 1989 63 1957–1966.
  • Venkatesh, LK Mohammed, S Chinnadurai, G Functional domains of the HIV-1 rev gene required for trans-regulation and subcellular localization. Virol. 1990 176 39–47.
  • Malim, MH Bohnlein, S Fenrick, R Le, S-Y Maizel, JV Cullen, BR Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proc. Natl. Acad. Sci. USA 1989 86 8222–8226.
  • Cochrane, AW Perkins, A Rosen, CA Identification of sequences important in the nucleolar localization of human immunodeficiency virus rev: Relevance of nucleolar localization to function. J. Virol. 1990 64 881–885.
  • Subramanian, T Srinivasan, A Chinnadurai, G Functional substitution of the basic domain of the HIV-1 trans-activator, Tat, with the basic domain of the functionally heterologous Rev. Virol. 1990 176 178–183.
  • Sodroski, J Goh, WC Rosen, C Dayton, A Terwilliger, E Haseltine, W A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 1986 321 412–417.
  • Rosen, CA Terwilliger, E Dayton, A Sodroski, JG Haseltine, WA Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1988 85 2071–2075.
  • Hadzopoulou-Cladaras, M Felber, BK Cladaras, C Athanassopoulos, A Tse, A Pavlakis, GN The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J. Virol. 1989 63 1265–1274.
  • Dayton, E Powell, D Dayton, A Functional analysis of CAR, the target sequence for the Rev protein of HIV-1. Science 1989 246 1625–1629.
  • Olsen, M Melbock, P Cochrane, A Rosen, CA Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science 1990 247 845–848.
  • Malim, MH Tiley, LS McCarn, DF Rusche, JR Hauber, J Cullen, BR HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 1990 60 675–683.
  • Daly, T Cook, K Gray, G Maione, T Rusche, J Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature 1989 342 816–819.
  • Zapp, M Green, MR Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 1989 342 714–716.
  • Heaphy, S Dingwall, C Ernberg, I Gait, MJ Green, SM Karn, J Lowe, AD Singh, M Skinner, MA HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response Element Region. Cell 1990 60 685–693.
  • Vaishnav, YN Vaishnav, M Wong-Staal, F Identification and characterization of a nuclear factor that specifically binds to the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1). New Biol. 1991 3 142–150.
  • Hauber, J Bouvier, M Malin, MHM Cullen, BR Phosphorylation of the rev gene product of human immunodeficiency virus type 1. J. Virol. 1988 62 4801–4804.
  • Cochrane, AW Golub, E Volsky, D Ruben, S Rosen, CA Functional significance of phosphorylation to the human immunodeficiency virus Rev protein. J. Virol. 1989 63 4438–4440.
  • Malim, MH Bohnlein, S Hauber, J Cullen, BR Functional dissection of the HIV-1 Rev trans-activator - derivative of a trans-dominant repressor of Rev protein. Cell 1989 58 205–214.
  • Felber, BK Campbell, M Pavlakis, GN Identification of trans-dominant HIV-1 rev protein mutants by direct transfer of bac-terially produced proteins into human cells. Nucleic Acid Res. 1990 18 2037–2044.
  • Olson, HS Cochrane, AW Dillon, PJ Nalin, CW Rosen, CA Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Gene Dev. 1990 4 1357–1364.
  • Chang, DD Sharp, PA Regulation by HTV Rev depends upon recognition of splice sites. Cell 1989 59 789–795.
  • Arrigo, S Beemon, K Regulation of Rous sarcoma virus RNA splicing and stability. Mol. Cell Biol. 1988 8 4858–4867.
  • Katz, RA Kotler, M Skalka, AM cis-acting intron mutation that affect the efficiency of avian retroviral RNA splicing: Implication for mechanisms of control. J. Virol. 1988 62 2686–2695.
  • Watanabe, S Temin, HM Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5′ long terminal repeat and the start of the gag gene. Proc. Natl. Acad. Sci. USA 1982 79 5986–5990.
  • Mann, RS Mulligan, RC Baltimore, D Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 1983 33 153–159.
  • Mann, R Baltimore, D Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J. Virol. 1985 54 401–407.
  • Katz, RA Teny, RW Skalka, AM A conserved cis-acting sequence in the 5′ leader of avian sarcoma virus RNA is required for packaging. J. Virol. 1986 59 163–167.
  • Bender, MA Palmer, TD Gelinas, RE Miller, AD Evidence that a packaging signal of Moloney murine leukemia virus extends into the gag region. J. Virol. 1987 61 1639–1646.
  • Adams, MA Miller, AD Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions. J. Virol. 1988 62 3802–3806.
  • Perez, LG Davis, GL Hunter, E Mutants of the Rous sarcoma virus envelope glycoprotein that lack the transmembrane anchor and cytoplasmic domains: Analysis of intracellular transport and assembly into virions. J. Virol. 1987 61 2981–2988.
  • Gheysen, D Jacobs, E de Foresta, F Thiriart, C Francotte, M Thines, D De Wilde, M Assembly and release of HTV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 1989 59 103–112.
  • Smith, AJ Cho, M-I Hammarskjold, M-L Rokosh, D Human immunodeficiency virus type 1 Pr55gag and Pr160gag-pol expressed from a simian virus 40 late replacement vector are efficiently processed and assembled into viruslike particles. J. Virol. 1990 64 2743–2750.
  • Karakostas, V Nagashima, K Gonda, MA Moss, B Human immunodeficiency viruslike particles produced by a vaccinia virus expression vector. Proc. Natl. Acad. Sci. USA 1989 86 8964–8967.
  • Haffar, O Garrigues, J Travis, B Moran, P Zarling, J Hu, S-L Human immunodeficiency virus-like, nonreplicating gag-env particles assemble in a recombinant vaccinia virus expression system. J. Virol. 1990 64 2653–2659.
  • Trono, D Beinberg, MB Baltimore, D HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 1989 59 113–120.
  • Lever, A Gottlinger, H Haseltine, W Sodroski, J Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virion. J. Virol. 1989 63 4085–4087.
  • Gorelick, RJ Nigida, SM Jr Weiss, JW Jr Arther, LO Henderson, LE Rein, A Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J. Virol. 1990 64 3207–3211.
  • Pal, R Reitz, MS Jr Tschachler, E Gallo, RC Sarngadharan, MG Veronese, FD Myristoylation of gag protein of HIV-1 plays an important role in virus assembly. AIDS Res. Human Retroviruses 1990 6 721–730.
  • Veronese, FD Copeland, TD Oroszlan, S Gallo, RC Sarngadharan, MG Biochemical and immunological analysis of human immunodeficiency virus gag gene products p17 and p24. J. Virol. 1988 62 795–801.
  • Bathurst, IC Chester, N Gibson, HL Dennis, AF Steimer, KS Barr, PJ N myristylation of the human immunodeficiency virus type 1 gag polyprotein precursor in Saccharomyces cerevisiae. J. Virol. 1989 63 3176–3179.
  • Gelderblom, HR Hausman, EHS Ozel, M Pauli, G Koch, MA Fine structure of human immunodeficiency virus (HTV) and immunolocalization of the structural proteins. Virol. 1987 156 171–176.
  • Hansen, I Billich, S Schulze, T Sukrow, S Moelling, K Partial purification and substrate analysis of bacterially expressed HIV protease by means of monoclonal antibody. EMBO J. 1988 7 1785–1791.
  • Gottlinger, HG Dorfman, T Sodroski, JG Haseltine, WA Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA 1991 88 3195–3199.
  • McCune, JM Rabin, LB Feinberg, MB Lieberman, M Kosek, JC Reyes, GR Weissman, IL Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 1988 53 55–67.
  • Gebhardt, A Bosch, JV Ziemieki, A Friis, PR Rous sarcoma virus p19 and gp35 can be chemically cross-linked to high molecular weight complexes. An insight into virus assembly. J. Mol. Biol. 1984 174 297–317.
  • Satake, M Luftig, RB Comparative immunofluorescence of murine leukemia virus-derived membrane-associated antigens. Virology 1983 124 259–273.
  • Hahn, BH Gonda, MA Shaw, GM Popovic, M Hoxie, JA Gallo, RC Wong-Staal, F Genomic diversity of the acquired immune deficiency syndrome virus HTLV-III: Different viruses exhibit greatest divergence in their envelope genes. Proc. Natl. Acad. Sci. USA 1985 82 4813–4817.
  • Starcich, BR Hahn, BH Shaw, GM McNeely, PD Modrow, S Wolf, H Parks, ES Parks, WP Josephs, SF Gallo, RC Wong-Staal, F Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, and retrovirus of AIDS. Cell 1986 45 637–648.
  • Coffin, JM Genetic variation in AIDS viruses. Cell 1986 46 1–4.
  • Alizon, M Wain-Hobson, S Montagnier, L Sonigo, P Genetic variability of the AIDS virus: Nucleotide sequence analysis of two isolates from African patients. Cell 1986 46 63–74.
  • Willey, RL Rutledge, A Dias, S Folks, T Theodore, T Buckler, CE Martin, MA Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc. Natl. Acad. Sci. USA 1986 83 5038–5042.
  • Kornbluth, RS Oh, PS Munis, JR Cleveland, PH Richman, DD The role of interferons in the control of HIV replication in macrophages. Clin. Immunol. Immunopathol. 1990 54 200–219.
  • Shirazi, Y Pitha, PM Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. J. Virol. 1992 66 1321–1328.
  • Yamamoto, JK Barre-Sinoussi, F Bolton, V Pedersen, NC Gardner, MB Human alpha- and beta-interferon but not gamma-suppress the in vitro replication of LAV, HTLV-III, and ARV-2. J. Interferon Res. 1986 6 143–152.
  • Dolei, A Fattorossi, A D'Amelio, R Aiuti, F Dianzani, F Direct and cell-mediated effects of interferon-α and - on cells chronically infected with HTLV-III. J. Interferon Res. 1986 6 543–549.
  • Poli, G Orenstein, JM Kinter, A Folks, TM Fauci, AS Interferon-α but not AZT suppresses HIV expression in chronically infected cell lines. Science 1989 244 575–577.
  • AIDS Weekly August 17 1992.
  • Friedman, RM Pitha, PM The effect of interferon on membrane-associated viruses Interferons Friedman, RM Elsevier Science Publishers BV Amsterdam 1984 Vol. 3 319–341.
  • Bilello, JA Wivel, NA Pitha, PM Effect of interferon on the replication of MCF virus in murine cells: Synthesis processing, assembly, and release of viral proteins. J. Virol. 1982 43 213–222.
  • Pitha, PM The effects of interferon in mouse cells infected with MuLV. Ann. N.Y. Acad. Sci. 1980 350 301–313.
  • AIDS Weekly August 17 1992.
  • McGrath, MS Hwang, KM Caldwell, SE Gaston, I Luk, K-C Wu, P Ng, VL Crowe, S Daniels, J Marsh, J Deinhart, T Lekas, PV Vennari, JC Yeung, H-W Lifson, JD GLQ223: An inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc. Natl. Acad. Sci. USA 1989 86 2844–2848.
  • Zhang, J-S Liu, W-Y The mechanism of action of trichosanthin on eukaryotic ribosomes-RNA N-glycosidase activity of the cytotoxin. Nuclear Acids Res. 1992 20 1271–1275.
  • Zhang, X Wang, J Homology of trichosanthin and ricin A chain. Nature 1986 321 477–478.
  • Lee-Huang, S Huang, PL Kung, H-F Li, B-Q Huang, PL Huang, P Huang, HI Chen, H-C TAP29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA 1991 88 6570–6574.
  • Zarling, JM Moran, PA Haffar, O Sias, J Richman, DD Spina, CA Myers, DE Kuebelbeck, V Ledbetter, JA Uckun, FM Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature 1990 347 92–95.
  • Lee-Huang, S Huang, PL Nara, PL Chen, HC Kung, HF Huang, P Huang, HI Huang, PL MAP30: A new inhibitor of HIV-1 infection and replication. FEBS Lett. 1990 272 12–18.
  • Lee-Huang, S Kung, HF Huang, PL Huang, P Huang, HI Huang, PL A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett. 1991 291 139–144.
  • Larder, BA Darby, G Richman, DD HTV with reduced sensitivity to Zidovudine (AZT) isolated during prolonged therapy. Science 1989 243 1731–1734.
  • Land, S Terloar, G Mcphee, D Birch, C Doherty, R Cooper, D Gust, I Decreased in vitro susceptibility to Zidovudine of HIV isolates obtained from patients with AIDS. J. Infect. Dis. 1990 161 326–329.
  • McLean, A Nowak, MA Competition between Zidovudine-sensitive and Zidovudine-resistant strains of HIV. AIDS 1992 6 71–79.
  • Muckenthaler, MN Gunkel, P Levantis, P Broadhurst, K Oxford, JS Sequence analysis of an HIV-1 isolate which displays unusually high-level AZT resistance in vitro. J. Med. Virol. 1992 36 79–83.
  • Kellam, P Boucher, CAB Larder, BA Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc. Natl. Acad. Sci. USA 1992 89 1934–1938.
  • St Clair, MH Martin, JL Tudor-Williams, G Back, MC Vavro, CL King, DM Kellam, P Kemp, SD Larder, BA Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science 1991 253 1557–1559.

References to Patent Literature

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.