27
Views
2
CrossRef citations to date
0
Altmetric
Cardiovascular Agents (Including Blood Products)

Overview: Calmodulin and Calmodulin-Antagonists

, &
Pages 1889-1917 | Published online: 02 Mar 2011

References to Primary Literature

  • Cheung, WY Calmodulin plays a pivotal role in cellular regulation. Science 1980 207 19–27.
  • Heizmann, CE Hunziker, W Intracellular calcium-binding proteins: More sites than insights. TIBS 1991 16 98–108.
  • Herzberg, O James, MNG Structure of calcium regulatory muscle protein troponin-C at 2.8A resolution. Nature 1985 313 653–659.
  • Klee, CB Vanaman, TC Calmodulin. Adv. Prot. Chem. Anfinsen, CB, Edsall, JT, Richards, FM1982 35 231–317 A comprehensive review on role of calmodulin in cell systems.
  • Babu, YS Sack, JS Greenhough, TJ Bugg, CE Means, AR Cook, MJ Three-dimensional structure of calmodulin. Nature 1985 315 37–40 A detailed description of the crystallographic structure of calmodulin.
  • Babu, YS Bugg, CE Cook, WJ Structure of calmodulin refined at 2.2A resolution. J. Mol. Biol. 1988 204 191–204.
  • Ikura, M Kay, LE Bax, A A novel approach for sequential assignment of 1H 13C 15N spectra of larger proteins. Heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochem. 1990 29 4659–4667.
  • Kretsinger, RH Nackolds, CE Carp muscle calcium-binding protein. J. Biol. Chem. 1973 248 3313–3326.
  • Da Silva, ACR Reinach, FC Calcium binding induces conformational change in muscle regulatory proteins. TIPS 1991 16 53–57.
  • Mackall, J Klee, CB Calcium-induced sensitization of the central helix of calmodulin to proteolysis. Biochem. 1991 30 7242–7247.
  • Burger, D Cox, JA Comte, M Stein, EA Sequential conformational change in calmodulin upon binding of calcium. Biochem. 1984 23 1966–1971.
  • Haiech, J Klee, CB Demaille, JG Effects of cations on affinity of calmodulin for calcium: Ordered binding of calcium ions allows the specific activation of calmodulin stimulated enzymes. Biochem. 1981 20 3890–3897.
  • Seamon, KB Calcium- and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance. Biochem. 1980 19 207–215.
  • La Porte, DC Wierman, B Storm, DR Calcium induced exposure of hydrophobic surface on calmodulin. Biochem. 1980 19 3814–3819.
  • Mills, JS Bailey, BL Johnson, D Cooperativity among calmodulin's drug binding sites. Biochem. 24 4897–4902.
  • Kretsinger, RH Rudnick, SE Weissman, LJ Crystal structure of calmodulin. J. Inorg. Biochem. 1986 28 289–302 A clear representation of the crystal structure of calmodulin, followed by a comparative study of the structure of calmodulin in solution is given in references 16 and 17.
  • Heidorn, DB Trewhella, J Comparison of the crystal and solution structure of calmodulin and troponin C. Biochem. 1988 27 909–915.
  • Persechini, A Kretsinger, RH The central helix of calmodulin functions as a flexible tether. J. Biol. Chem. 1988 263 12175–12178.
  • Trewhella, J Liddle, WK Heidorn, DB Strynadka, N Fourier Transform Infrared Spectroscopy: Effects of Ca2+ and Mg2+ binding. Biochem. 1989 28 1294–1301.
  • O'Neil, KT Degrado How calmodulin binds its targets: Sequence independent recognition of amphiphilic α-helix. TIBS 1990 15 59–64.
  • Ross, PD Subramanian, S Thermodynamics of protein association reactions: Forces contributing to stability. Biochem. 1981 20 3096–3102 The authors describe the influence of different forces on the interaction between calmodulin and target molecules demonstrating that lipophilicity, although important, is not the only factor involved in such an interaction.
  • Blumethal, DK Stull, JT Effects of pH, ionic strength, and temperature on activation by calmodulin and catalytic activity of myosin light chain kinase. Biochem. 1982 21 2386–2391.
  • Ikura, M Kay, LE Krinks, M Bax, A Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix. Biochem. 1991 30 5498–5504.
  • Carafoli, E Calcium pump of the plasma membrane. Physiolog. Rev. 1991 71 129–153.
  • Trewella, J Blumenthal, DK Rokop, SE Seeger, PA Small-angle scattering studies show distinct conformations of calmodulin and its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase. Biochem. 1990 29 9316–9324.
  • Harper, JF Sussman, MR Schaller, GE Putnam-Evans, C Charbonneau, SH Harmon, AC A calcium-dependent protein kinase with regulatory domain similar to calmodulin. Science 1991 252 951–954.
  • Van Berkum, MFA George, SE Means, AR Calmodulin activation of target enzymes. J. Biol. Chem. 1990 265 3750–3756.
  • Stull, JT Nunnally, MH Michnoff, CD Enzymes: Control by Phosphorylation. Bayer, PD, Krebs, EG Academic Press NY1986 17 113.
  • Newton, DL Oldewurtel, MD Krinks, MH Shiloach, J Klee, CB Agonist and antagonist properties of calmodulin fragments. J. Biol. Chem. 1984 259 4419–4426 This study demonstrates the use of fragments of calmodulin in order to evaluate the sites of interactions involved between calmodulin and target molecules.
  • Brostrom, CO Huang, J-C McL Breckenridge, B Wolff, DJ Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase. Proc. Natl. Acad. Sci. USA 1975 75 64–68.
  • Wang, JH Desai, R Modulator binding protein. Bovine brain protein exhibiting the Ca2+-dependent association with the protein modulator of cyclic nucleotide phosphodiesterase. J. Biol. Chem. 1977 252 4175–4184.
  • Weiss, B Prozialeck, WC Roberts-Lewis, JM Development of selective inhibitors of calmodulin-dependent phosphodiesterase and adenylate cyclase. Design of Enzyme Inhibitors of Drugs Sandler, M, Smith, HJ Oxford University Press New York1989 650–697 and Tokyo.
  • Widmaier, EP Hall, PF Calmodulin-binding proteins in plasma membranes from adreno-cortical cells. Endocrin. 1987 121 914–923.
  • Koletsky, RJ Brown, EM Williams, GH Calmodulin-like activity and calcium-dependent phosphodiesterase in purified cells of rat zona glomerulosa and zona fasciculata. Endocrin. 1983 113 485–490.
  • Coehlo-Sampaio, T Teixeira-Ferreira, A Vieyra, A Novel effects of calmodulin antagonists on the plasma membrane (Ca2+-Mg2+)-ATPase from rabbit kidney proximal tubules. J. Biol. Chem. 1991 266 10249–10253.
  • Mostafa, MH Nelson, DR Shukla, SD Hanahan, DJ Rabbit platelet calcium ATPase differs from the human erythrocyte (Ca2+-Mg2+)-ATPase in its response to three purified phospholipase A2, exogenous phospholipids and calmodulin. Biochim. Biophys. Acta 1984 776 259–266.
  • Meissner, G Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum. Biochem. 1986 25 244–251.
  • Gupta, RC Davis, BA Kranias, EG Mechanism of the stimulation of cardiac sarcoplasmic reticulum calcium pump calmodulin. Membrane Biochem. 1988 7 73–86.
  • Caride, AJ Rossi, JPFC Garrahan, PJ Rega, AF Does calmodulin regulate the affinity of human red cell Ca2+-pump for ATP? Biochim. Biophys. Acta 1990 1027 21–24.
  • Dasarathy Fanburg, BL Elevation of angiotensin converting enzyme by 3-isobutyl-1-methylxanthine in cultured endothelial cells. A possible role for calmodulin. J. Cellular Physiol. 1988 137 179–184.
  • Tsuda, K Nishio, I Masauyama The role of calmodulin in neurotransmitter release and vascular responsiveness in spontaneously hypertensive rats. Clin. Exp. Hyper. Theory and Practice 1988 A10 6 1051–1064.
  • Hathway Adelstein, RS Human platelet myosin light chain kinase requires calcium-binding protein calmodulin for activity. Proc. Natl. Acad. Sci. USA 1979 76 1653–1657 References 42 and 43 report interesting examples of calmodulin involvement in platelets reactions.
  • Nishikawa, M Tanaka, T Hidaka, H Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature 1980 287 863–865.
  • Nelson, GA Andews, ML Karnovsky, MJ Control of erythrocyte shape by calmodulin. J. Cell Biol. 1983 96 730–735.
  • Blumanthal, DK Takio, K Edelman, AM Charbonneau, H Titani, K Walsh, KA Krebs, EG Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc. Natl. Acad. Sci. USA 1985 82 3187–3191.
  • Moskowitz, N Andre's, A Silva, W Shapiro, L Schook, W Puszkin, S Calcium-dependent binding of calmodulin to phospholipase A2 subunits induces enzymatic activation. Arch. Biochem. Biophys. 1985 241 413–417.
  • Wong, PY-K Cheung, WY Calmodulin stimulates human platelet phospholipase A2. Biochem. Biophys. Res. Commun. 1979 90 473–480.
  • Moskowitz, N Schook, W Puszkin, S Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2. Science 1982 216 305–307.
  • Nolan, JC Gathright, CE Wagner, LE The effect of calcium channel blockers and calmodulin inhibitors on the factor-stimulated synthesis of collagenase by rabbit chondrocytes. Agents and Actions 1988 25 71–76.
  • Schubart, UK Erlichman, J Fleischer, N The role of calmodulin in the regulation of protein phosphorylation and insulin release in hamster insulinoma cells. J. Biol. Chem. 1980 255 4120–4124.
  • Scheep, W Schneider, J Heim, H-K Ruoff, H-J Schusdziarra, V Classen, M A calmodulin antagonist inhibits histamine-stimulated acid production by isolated rat parietal cells. Regulatory Peptides 1987 17 209–220.
  • Bernacchi, AS Fernandez, G Villarruel, MC De Ferreyra, EC De Castro, CR De Fenos, OM Castro, JA Further studies on the late preventive effects of the anticalmodulin trifluoperazine on carbon tetrachloride induced liver necrosis. Exper. Mol. Pathol. 1988 48 286–300.
  • Villaruel, MC Ferna'ndez, G De Ferreyra, EC De Fenos, OM Castro, JAP Modulation of the course of CCl-induced liver injury by the anti-calmodulin drug thioridazine. Toxicol. Letters 1990 51 13–21.
  • Menas, AR Rasmussen, CD Calcium, calmodulin and cell proliferation. Cell Calcium 1988 9 313–319.
  • Rasmussen, CD Means, AR Effect of changes in calmodulin levels on cell proliferation. Environm. Health Perspective 1990 84 31–34.
  • Jones, A Boynton, AL Calcium-calmodulin mediates the DNA-synthetic response of calcium-deprived liver cells to the tumor promoter TPA. Exper. Cell Res. 1982 138 87–93.
  • Ford, JM Hait, WN Machmanius, JP Whitfield, JF Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 1990 42 155–199 The type of molecules interacting with calmodulin and their possible therapeutical and practical application are extensively described.
  • Yoshinari, T Iwasawa, Y Miura, K Takahashi, IS Fukuroda, T Suzuki, K Okura, A Reversal of multidrug resistance by new dihydropyridines with lower calcium antagonistic activity. Cancer Chemother. Pharmacol. 1989 24 367–370.
  • Cox, JA Comte, M Malnoe, A Burges, D Stern, EA Mode of action of regulatory protein calmodulin. Metal ions in biological systems. Sigel, H M Dekker1984 17 215–273.
  • Hidaka, H Tanaka, T Biopharmacological assessment of calmodulin function: Utility of calmodulin antagonisms. Calmodulin and Intracellular Ca2+-receptors. Kakiuchi, S, Hidaka, H, Means, A Plenum Press NY, London1982 19–33.
  • Weiss, B Prozialeck, WC Wallace, TL Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem. 1982 31 2217–2226.
  • Mannhold, R Calmodulin antagonists: Chemistry, molecular pharmacology and therapeutic applications. Drugs of Today 1992 28 175–199.
  • MacNeil, S Lakey, T Tomlison, S Calmodulin regulation of adenylate cyclase activity. Cell Calcium 1985 6 213.
  • Prozialeck, WC Weiss, B Inhibition of calmodulin by phenothiazines and related drugs: Structure-activity relationship. J. Pharmacol. Exp. Therap. 1982 222 905–916.
  • Bereza, UL Brewer, GJ Mizukami, I Association of calmodulin inhibition, erythrocyte membrane stabilization and pharmacological effects of drugs. Biochim. Biophys. Acta 1982 692 305–314.
  • Klevit, RE Levine, BA Williams, RJP A study with calmodulin and its interaction with trifluoperazine by high resolution 1H-NMR spectroscopy. FEBS Lett. 1981 123 25–29.
  • Strynadka, NCJ James, MNG Two trifluoperazine binding sites on calmodulin predicted from comparative molecular modeling with troponin C. Proteins: Structure, Function and Genetics 1988 3 1–17.
  • Höltje, HD Hense, M A molecular modeling study on binding of phenothiazines to calmodulin. QSRA in drug design and toxicology. Hodzi, D, Jerman-Blazic, B Elsevier Science BV Amsterdam1987 157–161.
  • Massom, L Lee, H Jarrett, HW Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C. Biochem. 1990 29 671–681.
  • Levin, RM Weiss, B Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol. Pharmacol. 1977 13 690–697.
  • Massom, LR Lukas, TJ Perechini, A Kretsinger, RH Watterson, DM Jarrett, HW Trifluoperazine binding to mutant calmodulins. Biochem. 1991 30 663–667.
  • Levin, RM Weiss, B Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J. Pharmacol. Exp. Ther. 1979 208 454–459.
  • Prozialeck, WC Cimino, M Weiss, B Photoaffinity labeling of calmodulin by phenothiazine antipsychotics. Mol. Pharmacol. 1981 19 264–269.
  • Zhang, S Prozialeck Weiss, B Differential inhibition of calcium-dependent and calmodulin-dependent enzymes by drug-calmodulin adducts. Mol. Pharmacol. 1990 38 698–704.
  • Newton, DL Klee, CB Phenothiazine-binding and attachment sites of CAPP1-calmodulin. Biochem. 1989 28 3750–3757.
  • Newton, DL Burke, TR Jr Rice, KC Klee, CB Calcium ion dependent covalent modification of calmodulin with nor chlor-promazine isothiocyanate. Biochem. 1983 22 5472–5476.
  • Newton, DL Klee, CB CAPP-calmodulin: A potent competitive inhibitor of calmodulin actions. FEBS Lett. 1984 165 269–272.
  • Raess, BU Vincenzi, FF Calmodulin activation of red blood cell (Ca2+-Mg2+-ATPase) and its antagonism by phenothiazines. Mol. Pharmacol. 1980 18 253–258.
  • Roufogalis, BD Phenothiazine antagonism of calmodulin: A structurally-nonspecific interaction. Biochem. Biophys. Res. Commun. 1981 98 607–613.
  • Morgan, PF Patel, J Marangos, PJ Characterization of [3H]-Ro 5-4864 binding to calmodulin using a rapid filtration technique. Biochem. Pharmacol. 1987 36 4257–4262.
  • Schmidt, BH Schultz, JE The potential antidepressant triflucarbine down-regulates β-adrenoceptors in rat brain. Eur. J. Pharmacol. 1986 136 27–35.
  • Glaser, T Seidel, P-R Triflucarbine. Drugs Fut. 1987 12 562–564.
  • Schmidt, BH Glaser, T Seidel, P-R Traber, J Evidence for a specific recognition site for triflucarbine on calmodulin. Eur. J. Pharmacol. 1990 189 411–418.
  • Ford, JM Prozialeck, WC Hait, WN Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol. Pharmacol. 1989 35 105–115.
  • Hait, WN Lee, GL Characteristic of the cytotoxic effects of the phenothiazine class of calmodulin antagonists. Biochem Pharmacol. 1985 34 3973–3978.
  • Hait, WN Aftab, DT Rational design and pre-clinical pharmacology of drugs for reversing multidrug resistance. Biochem. Pharmacol. 1992 43 103–107.
  • Giri, SN Nakashima, JM Curry, DL Effects of intra-tracheal administration of bleomycin or saline in pair-fed and control-fed hamsters on daily food intake and on plasma levels of glucose, cortisol, and insulin, and lungs level of calmodulin, calcium, and collagen. Exp. Mol. Pathol. 1985 42 206–219.
  • Hait, WN Lazo, JS Chen, D-L Gallichio, VS Filderman, AE Antitumor and tumor effects of combination chemotherapy with bleomycin and phenothiazine anticalmodulin agent. J. Natl. Cancer Inst. 1988 80 246–250.
  • Nakashima, JM Hyde, DM Giri, SN Effect of a calmodulin inhibitor bleomycin-induced lung inflammation in hamsters. Am. J. Phatol. 1986 124 528–536.
  • Boström, S-L Ljung, B Mardh, S Forsen, S Thulin, E Interaction of antihypertensive drug felodepine with calmodulin. Nature 1981 292 777–778.
  • Johnson, JD Wittenauer, LA Localization of a felodipine (dihydropyridine) binding site on calmodulin. Biochem. 1986 25 2226–2231.
  • Epstein, PM Fiss, K Hachisu, R Adrenyak, DM Interaction of calcium antagonists with cyclic AMP phosphodiesterase and calmodulin. Biochem. Biophys. Res. Commun. 1982 105 1142–1149.
  • Van Inwegen, RG Weinryb, I Jones, H Khandwala, A Comparative structure-activity relationships in the series of dihydropyridines as inhibitors of [3H]-nitrendipine binding vs cyclic nucleotide phosphodiesterases. Res. Commun. Chem. Pathol. Pharmacol. 1984 45 191–206.
  • Johnson, JD Vaghi, PL Crouch, TH Potter, JD Schwartz, A An hypothesis for the mechanism of action of some of the Ca2+-antagonist drugs: Calmodulin as a receptor. Adv. Pharmacol. Ther. Proc. Int. Congr. Pharmacol. 8th 1982 3 121–138.
  • Spedding, M Direct inhibitory effects of some ‘calcium-antagonists’ and trifluperazine on the contractile proteins in smooth muscle. Br. J. Pharmacol. 1983 79 225–231.
  • Akiyama, K Suto, D 1H-NMR studies of calmodulin: The modifying effect of W-7 (N-6-aminohexyl)-5-chloro-1-naphthalenesulfon-amide) on the calcium-induced conformational changes of calmodulin. Jap. J. Pharmacol. 1988 48 157–164.
  • Hidaka, H Asano, M Iwadare, S Matsumoto, I Totsuka, T Aoki, N A novel vascular relaxant agent, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide which affects vascular smooth muscle actomyosin. J. Pharmacol. Exp. Ther. 1978 207 8–15 These investigators (refs 97-99) have carried out a study in which the profile of a class of vasodilators, naphthalene-sulphonamides. Extensive structure-activity relationship analysis in respect to their affinity with calmodulin is presented with a broad spectrum of practical applications.
  • Hidaka, H Asano, M Tanaka, T Activity-structure relationship of calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol. Pharmacol. 1981 20 571–578.
  • Hidaka, H Sasaki, Y Tanaka, T Endo, T Ohno, S Fujii, Y Nagata, T N-(6-aminohexyl)-5-chloro-1-naphthalenesulfon-amide, a calmodulin antagonist, inhibits cell proliferation. Proc. Natl. Acad. Sci. USA 1981 78 4354–4357.
  • Caldirola, P Coats, E Mannhold, R van der Goot, H Timmerman, H New calmodulin antagonists of the diphenylalkylamine type II. Quantitative structure-activity by means of partial least squares analysis (PLS). Submitted.
  • Caldirola, P Monteil, A Zanberg, P Mannhold, R Timmerman, H VUF 8929, a diphenylalkylamine-derivative with selective coronary dilatory properties. Submitted.
  • Johnson, DJ Fugman, DA Calcium- and calmodulin-antagonists binding to calmodulin and relaxation of coronary segments. J. Pharmacol. Exp. Ther. 1983 226 330–334.
  • Hidaka, H Yamaki, Y Tortsuka, T Asano, M Selective inhibitors of Ca2+-binding modulator of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction. Mol. Pharmacol. 1979 15 49–59.
  • Johnson, JD A calmodulin-like Ca2+-receptor in the Ca2+-channel. Biophys. J. 1984 45 134–136.
  • Amers, MS Cyclic nucleotides in vascular and hypertension. 3′,5′-nucleotides: Mechanism of action. Cramer, H, Schultz, J Wiley and Sons London1977 21 381–396.
  • Zimmer, M Hoffman, F Differentiation of drug-binding sites of calmodulin. Eur. J. Biochem. 1987 164 411–420.
  • Kostrzewska, A Laudanski, T Batra, S Effect of calcium and calmodulin antagonists on contractile responses of the human uterine artery. Br. J. Pharmacol. 1988 94 1037–1042.
  • Boddeke, HWGM Wilfert, B Hugtenburg, JG Jap, TJW Veldsema-Currie van Zwieten, PA Anti-ischaemic activity of various calmodulin antagonists. Pharmacol. 1988 37 240–247.
  • Silver, PJ Connell, MJ Dillon, KM Cumiskey, WR Volberg, WA Ezrin, AM Inhibition of calmodulin and protein kinase C by amidonarane and other class III of antiarrhythmic agents. Cardiovascular Drugs and Therapy 1989 3 675–682.
  • Itoh, H Tanaka, T Mitani, Y Hidaka, H The binding of the calcium channel blocker bepridil to calmodulin. Biochem. Pharmacol. 1986 35 217–220.
  • Lamers, JMJ Verdouw, PD Mas-Oliva, J The binding of felodipine and bepridil on calcium-stimulated calmodulin binding and calcium pumping ATPase of cardiac sarcolemma before and after removal of endogenous calmodulin. Mol. Cell Biochem. 1978 78 169–176.
  • Sugawara, E Nakayama, Y Senoo, Y Teramoto, S Protective effects of calmodulin antagonists (trifluoperazine and W-7) on hypothermic ischaemic rat heart. Acta Med. Okayama 1991 45 129–134.
  • Barron, E Marshall, RJ Martorana, M Winslow, E Comparative antiarrhythmic and electrophysiological effects of drugs to inhibit calmodulin. (TFP, W-7 and bepridil). Br. J. Pharmacol. 1986 89 603–612.
  • Meerson, FZ Malyshev, IY Larionov, NP Karpov, RS Prevention of adrenalin-induced arrhythmias by the calmodulin blocker trifluoperazine. Bulletin Exper. Biol. Meditr. 1989 108 59–62.
  • Beresewicz, A Anti-ischaemic and membrane stabilizing activity of calmodulin inhibitors. Basic Res. Cardiol. 1989 84 631–645.
  • Volpi, M Sha'afi, RI Epstein, PM Andrenyak, DM Feinstein, MB Local anaesthetics, mepacrin, and propranolol are antagonists of calmodulin. Proc. Natl. Acad. Sci. USA 1981 78 795–799.
  • Tanaka, T Hidaka, H Interaction of local anesthetics with calmodulin. Biochem. Biophys. Res. Commun. 1981 101 447–453.
  • Reid, DG MacLachlan, LK Gajjar, K Voyle, M King, RJ England, PJ A proton magnetic resonance and molecular modeling study of calmidazolium (R 24571) binding to calmodulin an skeletal muscle troponin-C. J. Biol. Chem. 1990 265 9744–9758.
  • Sobieszek, A Calmodulin antagonist action in smooth-muscle myosin phosphorylation. Different mechanisms for trifluoperazine and calmidazolium inhibition. Biochem. J. 1989 262 215–223.
  • Gietzen, K Wüthrich, A Bader, H R 2471: A new powerful inhibitor of red blood cell Ca2+-transport ATPase and calmodulin-regulated functions. Biochem. Biophys. Res. Commun. 1981 101 418–425.
  • Lückhoff, A Bohnert, M Busse, R Effects of the calmodulin antagonists fendilin and calmidazolium on aggregation, secretion of ATP and internal calcium in washed human platelets. Arch. Pharmacol. 1911 343 96–101.
  • Zimmer, M Hofmann, F Calmodulin antagonists inhibit activity of myosin light-chain kinase independent of calmodulin. Eur. J. Biochem. 1984 142 393–397.
  • Elliott, ME Jones, HM Goodfriend Effects of calmidazolium and other calmodulin antagonists on adrenal glomerulosa cells. Biochem. Pharmacol. 1991 41 1083–1086.
  • Norman, JA Ansell, J Stone, GA Wennogle, LP Wasley, JWF CGS 9343B, a novel, potent, and selective inhibitor of calmodulin activity. Mol. Pharmacol. 1987 31 535–540.
  • Polak, KA Edelman, AM Wasley, JWF Cohan, CS A novel calmodulin antagonist, CGS 9343B, modulates calcium-dependent changes in neurite outgrowth cone movements. J. Neurosci. 1991 11 534–542.
  • Celeste, M Lopes, F Graca, M Vale, P Carvalho, AP Ca2+-dependent binding of tamoxifen to calmodulin isolated from bovine brain. Cancer Res. 1990 50 2753–2758.
  • Lam, H-YP Tamoxifen is a calmodulin antagonist in the activation of cAMP phosphodiesterase. Biochem. Biophys. Res. Commun. 1984 118 27–32.
  • O'Brian, CA Ioannides, CG Ward, NE Liskamp, RM Inhibition of protein kinase C and calmodulin by the geometric isomers cis- and trans-tamoxifen. Biopolymers 1990 29 97–104.
  • Earl, CQ Prozialeck, WC Weiss, B Interaction of α-adrenergic antagonists with calmodulin. Life Sciences 1984 35 525–534.
  • Cimino, M Weiss, B Characteristics of the binding of phenoxybezamines to calmodulin. Biochem. Pharmacol. 1988 37 2739–2745.
  • Lukas, TJ Marshak, DR Watterson, DM Drug-protein interactions: Isolation and characterization of covalent adducts of phenoxy-benzamine and calmodulin. Biochem. 1985 24 151–157.
  • Ortner, MJ Sik, RH Chignell, CF A nuclear magnetic resonance study of compound 48/80. Mol. Pharmacol. 1979 15 179–188.
  • Adamczyk-Engelmann, P Gietzen, K Induction of histamine release and calmodulin antagonism are two distinct properties of compound 48/80. Cell Calcium 1989 10 93–99.
  • Matsuda, Y Nakanishi, S Nagasawa, K Kase, H Inhibition by new anthraquinone compounds, K-259-2 and KS-619-1, of calmodulin-dependent cyclic nucleotides phosphodiesterase. Biochem. Pharmacol. 1990 39 841–849.
  • Hu, Z-Y Chen, S-L Hao, Z-G Huang, W-L Peng, S-X Benzylisoquinoline compounds inhibit the ability of calmodulin to activate cyclic nucleotide phosphodiesterase. Cell Signalling 1989 1 181–185.
  • Leung, PC Taylor, WA Wang, JH Tipton, CL Ophiobolin A. A natural product inhibitor of calmodulin. J. Biol. Chem. 1984 259 2742–2747.
  • Tipton, CL Shin, M Magat, WJ Isolation and characterization of calmodulin-inactivating cholesterol hydroperoxyides. J. Lipid Res. 1911 32 1403–1408.
  • Tipton, CL Leung, PC Johnson, JS Brooks, RJ Beitz, DC Cholesterol hydroperoxides inhibit calmodulin an suppress atherogenesis in rabbits. Biochem. Biophys. Res. Commun. 1987 146 1166–1172.
  • Masson, M Spezzati, B Chapman, J Battisti, C Baumann, N Calmodulin antagonists chlorpromazine and W-7 inhibit exogenous cholesterol esterification and sphingomyelinase activity in human skin fibroblast cultures. Similarities between drug-induced and niemman-pick type C lipodoses. J. Neurosci. Res. 1992 31 84–88.
  • Sellinger-Barnette, M Weiss, B Interaction of β-endorphin and other opioid peptides with calmodulin. Mol. Pharm. 1982 21 86–91.
  • Caday, CG Steiner, RF Interaction of calmodulin with melittin. Biochem. Biophys. Res. Comm. 1986 135 419–425.
  • Cachia, PJ Van Eyk, J Ingraham, RH McCubbin, WD Kay, CM Hodges, RS Calmodulin and troponin C: A comparative study of the interaction of mestoparan and troponin I inhibitory peptide [104–115]. Biochem. 1986 25 3553–3562.
  • Blumenthal, DK CHarbonneau, H Edelman, AM Hinds, TR Rosenberg, GB Storm, DR Vincenzi, FF Beavo, JA Krebs, EG Synthetic peptides based on the calmodulin-binding domain of myosin light chain kinase inhibit activation of other calmodulin-dependent enzymes. Biochem. Biophys. Res. Comm. 1988 156 860–865.
  • Heidorn, DB Seeger, PA Rokop, SE Blumenthal, DK Means, AR Crepsi, H Trewhella, J Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain myosin light chain kinase. Biochem. 1986 28 6757–6764.
  • Roth, SM Schneider, DM Strobel, LA Van Berkum, MFA Means, AR Wand, AJ Structure of the smooth muscle myosine light-chain kinase calmodulin-binding peptide bound to calmodulin. Biochem. 1991 30 10078–10084.
  • Ikura, M Kay, LF Krinks, M Bax, SA Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix. Biochem. 1991 30 5498–5504.

References to Patent Literature

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.