3
Views
3
CrossRef citations to date
0
Altmetric
CNS Agents

Overview: Excitatory Amino Acids; Current Opinion in Therapeutic Patents June 1992

Pages 907-930 | Published online: 02 Mar 2011

References to Primary Literature

  • Bindman L, Christofi G, Murphy K, Nowicky A Long-term potentiation (LTP) and depression (LTD) in the neocortex and hippocampus: An overview. Aspects of Synaptic Transmission Stone TW Taylor & Francis London 1991.
  • Stone TW, Burton NR, Smith DAS The electrophysiology of quinolinic acid and related compounds. The CNS in Quinolinic Acid and Kynurenines Stone TW CRC Press Florida 1989.
  • Keith JR, Rudy JW Why NMDA-receptor-dependent long-term potentiation may not be a mechanism of learning and memory: Reappraisal of the NMDA-receptor blockade strategy. Psychobiol. 1990 18 251–257.
  • Gallagher M, Robinson, Psychobiol. 1990 18 258–260.
  • Morris RGM It's heads they win, tails I lose!. Psychobiol. 1990 18 261–266.
  • Rudy JW, Keith JR Why NMDA-receptor-dependent long-term potentiation may not be a learning and memory mechanism, or is it Memorex?. Psychobiol. 1990 18 269–272.
  • Klockgether T, Turski L, Honore T, Zhang Z, Gash DM, Kurlan R, Greenamyre JT The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTPT-treated monkeys. Ann. Neurol. 1991 30 717–723.
  • Greenamyre JT, O'Brien CF NMDA antagonists in the treatment of Parkinson's disease. Arch. Neurol. 1991 48 977–981.
  • Rosenberg PA, Loring R, Xie Y, Zaleskas V, Aizenman E 2,4,5-Trihydroxypenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin. Proc. Natl. Acad. Sci. USA 1991 88 4865–4869.
  • Boulter J, Hollmann M, O'Shea-Greenfield A, Hartley M, Deneris E, Maron C, Heinemann S Molecular cloning and functional expression of glutatamate receptor subunit genes. Science 1990 249 1033–1037.
  • Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH A family of AMPA-selective glutamate receptors. Science 1990 249 556–560.
  • Hollmann M, O'Shea-Greenfield A, Rogers SW, Heinemann S Cloning by functional expression of a member of the glutamate receptor family. Nature 1989 342 643–648.
  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S Molecular cloning and characterization of the rat NMDA receptor. Nature 1991 354 31–354.
  • Kumar KN, Tilakaratne N, Johnson PS, Allen AE, Michaelis EK Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 1991 354 70–73.
  • Stone TW, Burton NR NMDA receptors and ligands in the vertebrate CNS. Progr. Neurobiol. 1987 30 333–368.
  • Schwarcz R, Foster AC, French ED, Wetsell WO Jnr., Kohler C Excitotoxic models for neurodegenerative disorders. Life Sci. 1984 35 19–32.
  • Stone TW, Connick JH, Winn P, Hastings MH, English M Endogenous excitotoxic agents in Selective Neuronal Death Bock G O'Conor M Wiley & Sons London 1987.
  • McDonald JW, Penney JB, Johnston MV, Young AB Characterization and regional distribution of strychnine-insensitive [3H] glycine binding sites in rat brain by quantitative receptor autoradiography. Neurosci. 1990 35 653–668.
  • Yoneda Y, Ogita K Heterogeneity of the N-methyl-D-aspartate receptor ionophore complex in rat brain, as revealed by ligand binding techniques. J. Pharmacol. Exp. Ther. 1991 259 86–96.
  • Monaghan DT Differential stimulation of [3H]MK-801 binding to subpopulations of NMDA receptors. Neurosci. Lett. 1991 122 21–24.
  • Reynolds IJ, Palmer AM Regional variations in [3H]MK801-binding to rat brain N-methyl-D-aspartate receptors. J. Neurochem. 1991 56 1731–1740.
  • Ebert B, Wong EHF, Krogsgaard-Larsen P Identification of a novel NMDA receptor in rat cerebellum. Europ. J. Pharmacol. Mol. Phar. Sec. 1991 208 49–52.
  • Zeevalk GD, Nicklas WJ Action of the anti-ischemic agent ifenprodil on N-methyl-D-aspartate and kainate-mediated excitotoxicity. Brain Res. 1990 522 135–139.
  • Monaghan DT, Beaton JA Quinolinate differentiates between forebrain and cerebellar NMDA receptors. Europ. J. Pharmacol. 1991 194 123–125.
  • Cai N-S, Kiss B, Erdo SL Heterogeneity of N-methyl-D-aspartate receptors regulating the release of dopamine and acetylcholine from striatal slices. J. Neurochem. 1991 57 2148–2151.
  • Williams TLMW, Smith DAS, Burton NR, Stone TW Amino acid pharmacology in neocortical slices: Evidence for bimolecular actions from an extension of the Hill and Gadum-Schild equations. Brit. J. Pharmacol. 1988 95 805–810.
  • Benveniste M, Mayer ML A kinetic analysis of antagonist action at NMDA receptors: Two binding sites each for glutamate and glycine. Biophys. J. 1991 59 560–573.
  • Javitt DC, Frusciante MJ, Zukin SR Rat brain N-methyl-D-aspartate receptors require multiple molecules of agonist for activation. Mol. Pharmacol. 1990 37 603–607.
  • Clements JD, Westbrook GL Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron. 1991 7 605–613.
  • Benveniste M, Mayer ML Structure activity analysis of binding kinetics for NMDA receptor competitive antagonists: The influence of conformational restriction. Brit. J. Pharmacol. 1991 104 207–221.
  • Coderre TJ, Melzack R Central neural mediators of secondary hyperalgesia following heat injury in rats: Neuropeptides and excitatory amino acids. Neurosci. Lett. 1991 131 71–74.
  • Haley JE, Sullivan AF, Dickenson AH Evidence for spinal NMDA receptor involvement in prolonged chemical nociception in the rat. Brain Res. 1990 518 218–222.
  • Klepstad P, Maurset A, Moberg ER, Oye I Evidence of a role for NMDA receptors in pain perception. Europ. J. Pharmacol. 1990 187 513–518.
  • Murray CW, Cowan A, Larson AA Neurokinin and NMDA antagonists (but not a kainic acid antagonist) are antinociceptive in the mouse fomalin model. Pain 1991 44 179–185.
  • Raigorodsky G, Urca G Spinal antinociceptive effects of excitatory amino acid antagonists: Quisqualate modulates the action of NMDA. Europ. J. Pharmacol. 1990 182 1 37–47.
  • Whitten JP, Baron BM, Muench D, Miller F, White HS, McDonald IA (R)-4-Oxo-5-phosphononorvaline: A new competitive glutamate antagonist at the NMDA receptor complex. J. Med. Chem. 1990 33 2961–2963.
  • Ornstein PL, Schoepp DD, Arnold MB, Leander JD, Lodge D, Paschal JW, Elzey T 4-Tetrazolylalkyl-piperidine2-carboxylic acids. Potent and selective NMDA receptor antagonists with a short duration of action. J. Med. Chem. 1991 34 90–97.
  • Monahan JB, Hood WF, Compton RP, Cordi AA, Snyder JP, Pellicciari R, Natalini B Characterization of D-3,4-cyclopropy-lglutamates as NMDA receptor agonists. Neurosci. Lett. 1990 112 328–332.
  • Dappen MS, Pellicciari R, Natalini B, Monahan JB, Chiorri C, Cordi AA Synthesis and biological evaluation of cyclopropyl analogues of 2-amino-5-phosphonopentanoic acid. J. Med. Chem. 1991 34 161–168.
  • Ishida M, Ohfune Y, Shimada Y, Shimamoto K, Shinozaki H Changes in preference for receptor subtypes of configurational variants of a glutamate analog: Conversion from the NMDA type to the non-NMDA type. Brain Res. 1991 550 152–156.
  • Williams K, Romano C, Molinoff PB Effects of polyamines on the binding of [3H]MK-801 to the NMDA receptor: Pharmacological evidence for the existence of a polyamine recognition site. Mol. Pharmacol. 1989 36 575–581.
  • Sacaan AI, Johnson KM Competitive inhibition of magnesium-induced [3H]N-(1)[Thienyl] cyclohexyl-piperidine binding by arcaine: Evidence for a shared spermidine-magnesium binding site. Mol. Pharmacol. 1990 38 705–710.
  • Romano C, Williams K, Molinoff PB Polyamines modulate the binding of [3H]MK-801 to the solubilized NMDA receptor. J. Neurochem. 1991 57 811–818.
  • Nussenzveig IZ, Sircar R, Wong M-L, Frusciante MJ, Javitt DC, Zukin SR Polyamine effects upon NMDA receptor functioning: Differential alteration by glutamate and glycine site antagonists. Brain Res. 1991 561 285–291.
  • Kish SJ, Wilson JM, Fletcher PJ The polyamine sythesis inhibitor alpha-difluoromethylornithine is neuroprotective against NMDA-induced brain damage in vivo. Europ. J. Pharmacol. 1991 209 101–103.
  • Williams K, Dawson VL, Romano C, Dichter MA, Molinoff PB Characterization of polyamines having agonist, antagonist and inverse agonist effects at the polyamine recognition site of the NMDA receptor. Neuron. 1990 5 199–208.
  • Reynolds IJ, Baron BM, Edwards ML 1,10-bis(Guanidino)decane inhibits NMDA responses in vitro and in vivo. J. Pharmacol. Exp. Ther. 1991 259 626.
  • Chenard BL, Shalaby IA, Koe BK, Ronau RT, Butler TW, Prochniak MA, Schmidt AW, Fox CB Separation of alphal adrenergic and NMDA antagonist activity in a series of ifenprodil compounds. J. Med. Chem. 1991 34 3085–3090.
  • Reynolds IJ, Miller RJ Ifenprodil is a novel type of NMDA receptor antagonist: Interaction with polyamines. Mol. Pharmacol. 1989 36 758–765.
  • Legendre P, Westbrook GL Ifenprodil blocks NMDA receptors by a two-component mechanism. Mol. Pharmacol. 1991 40 28–298.
  • Beart PM, Mercer LD, Jarrott B [1251]-ifenprodil: A convenient radioligand for binding and autoradiographic studies of the polyamine-sensitive site of the NMDA receptor. Neurosci. Lett. 1991 124 187–189.
  • McBain CJ, Kleckner NW, Wyrick S, Dingledine R Structural requirements for activation of the glycine coagonist site of NMDA receptors expressed in Xenopus oocytes. Mol. Pharmacol. 1989 36 556–565.
  • Leeson PD, Baker R, Carling RW, Curtis NR, Moore KW, Foster AC, Donald AE, Kemp JA, Marshall GR Kynurenic acid derivatives. Structure-activity relationships for excitatory amino acid antagonism and identification of potent and selective antagonists at the glycine site on the NMDA receptor. J. Med. Chem. 1991 34 1243–1252.
  • Moroni F, Alesiani M, Galli A, Mori F, Pecorari R, Carla V, Cherici G, Pellicciari R Thiokynurenates: A new group of antagonists of the glycine modulatory site of the NMDA receptor. Europ. J. Pharmacol. 1991 199 227–232.
  • Harrison BL, Baron BM, Cousino DM, McDonald IA 4-[(Carboxymethyl-oxy]) and 4-[-carboxymethyl-amino]-5,7-dichloroquinoline-2-carboxylic acid: New antagonists of the strychnine-insensitive glycine binding site on the NMDA receptor complex. J. Med. Chem. 1990 33 3130–3132.
  • Salituro FG, Tomlinson RC, Baron BM, Demeter DA, Weintraub H, McDonald JR Design, synthesis and molecular modeling of 3-acylamino-2-carboxyindole NMDA receptor glycine site antagonists. Bioorg. Med. Chem. Lett. 1991 1 455–460.
  • Gray NM, Dappen MS, Cheng BK, Cordi AA, Biesterfeldt JP, Hood WF, Monahan JB Novel indole-2-carboylates as ligands for the strychnine-insensitive NMDA-linked glycine receptor. J. Med. Chem. 1991 34 1283–1292.
  • McDonald JW, Uckele J, Silverstein FS, Johnston MV HA-966 (1-hydroxy-3-aminopyrrolidone-2) selectively reduces NMDA-mediated brain damage. Neurosci. Lett. 1989 104 167–170.
  • Henderson G, Johnson JW, Ascher P Competitive antagonists and partial agonists at the glycine modulatory site of the mouse NMDA receptor. J. Physiol. 1990 430 189–212.
  • Vartanian MG, Taylor CP Different stereoselctivity of the enantiomers of HA-966 (3-amino-1-hydroxy-2-pyrrolidinone) for neuroprotective and anticonvulsant actions in vivo. Neurosci. Lett. 1991 133 109–112.
  • Schwartz BL, Hashtroudi S, Hertig RL, Handerson H, Deutsch SI Glycine prodrug facilitates memory retrieval in humans. Neurology 1991 41 1341–1343.
  • Chessell IP, Procter AW, Francis PT, Bowen DM D-Cycloserine, a putative cognitive enhancer, facilitates activation of the NMDA receptor ionophore complex in Alzheimer brain. Brain Res. 1991 565 345–348.
  • Emmett MR, Mick SJ, Cler JA, Rao TS, Iyengar S, Wood PL Actions of D-cycloserine at the NMDA-associated glycine receptor site in vivo. Neuropharmacol. 1991 30 1167–1171.
  • Schoepp DD, Smith CL, Lodge D, Millar JD, Leander JD, Sacaan AI, Lunn WHW D,L-(Tetrazol-5-yl) glycine: A novel and highly potent NMDA receptor agonist. Europ. J. Pharmacol. 1991 203 237–243.
  • Trullus R, Folio T, Young A, Miller R, Boje K, Skolnick P 1-Aminocyclopropanecarboxylates exhibit antidepresseant and anxiolytic actions in animal models. Europ. J. Pharmacol. 1991 203 379–385.
  • Sucher NJ, Lipton SA Redox modulatory site of the NMDA receptor-channel complex: Regulation by oxidized glutathione. J. Neurosci. Res. 1991 30 582–591.
  • Gilber KR, Aizenman E, Reynolds IJ Oxidized glutathione modulates NMDA- and depolarization-induced increases in intracellular Ca in cultured rat forebrain neurons. Neurosci. Lett. 1991 57 2059–2064.
  • Woodward JJ, Blair R Redox modulation of NMDA-stimulated neurotransmitter release from rat brain slices. J. Neurochem. 1991 57 2059–2064.
  • Aizenman E, Hartnett KA, Reynolds IJ Oxygen free radicals regulate NMDA receptor function via a redox modulatory site. Neuron. 1990 5 841–846.
  • Rogawski MA, Yamaguchi S-I, Jones SM, Rice KC, Thurkauf A, Monn JA Anticonvulsant activity of the low-affinity uncompetitive NMDA antagonist (±)-5-aminocarbonyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (ADCI): Comparison with the structural analogs dizocilpine (MK-801) and carbamazepine. J. Pharmacol. Exp. Ther. 1991 259 30.
  • Decker RH, Brown RR, Price JM Studies on the biological activity of nicotinylalanine, an analogue of kynurenine. J. Biol. Chem. 1963 238 1049–1053.
  • Connick JH, Heywood GC, Sills GJ, Thompson GG, Brodie MJ, Stone TW Nicotinylalanine increases cerebral kynurenic acid content and has anticonvulsant activity. Gen. Pharmacol. 1992 23 235–239.
  • Moroni F, Russi P, Gallomezo MA, Moneti G, Pellicciari R Modulation of quinolinic and kynurenic acid content in the rat brain - effects of endotoxins and nicotinylalanine. J. Neurochem. 1991 57 1630–1635.
  • Krogsgaard-Larsen P, Ferkany JW, Nielsen EO, Madsen U, Ebert B, Johansen JS, Diemer NH, Bruhn T, Beattie DT, Curtis DR Novel class of amino acid antagonists at non-NMDA excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology and neuroprotection. J. Med. Chem. 1991 34 123–130.
  • Frandsen A, Krogsgaard-Larsen P, Schousboe A Novel glutamate receptor antagonists selectively protect against kainic acid neurotoxicity in cultured cerebral cortex neurons. J. Neurochem. 1990 55 1821–1823.
  • Kiss B, Cai N-S, Erdo SL Vinpocetine preferentially antagonizes quisqualate/AMPA receptor responses: Evidence from release and ligand binding studies. Europ. J. Pharmacol. 1991 209 109–112.
  • Stone TW Sensitivity of hippocampal neurones to kainic acid, and antagonism by kynurenate. Br. J. Pharmacol. 1990 101 847–852.
  • Palmer E, Monaghan DT, Cotman CW Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Europ. J. Pharmacol. 1989 166 585.
  • Salt TE, Eaton SA Excitatory actions of the metabotropic excitatory amino acid receptor agonist trans-(±-1-aminocyclopentane-1,3-dicarboxylate (t-ACPD), on rat thalamic neurons in vivo. Europ. J. Neurosci. 1991 3 1104–1111.
  • Zheng F, Gallagher JP Trans-ACPD (trans-D,L-1-amino-1,3-cyclopentanedicarboxylic acid) elicited oscillation of membrane potentials in rat dorsolateral septal nucleus neurons recorded intracellularly in vitro. Neurosci. Lett. 1991 125 147–150.
  • Charpak S, Gahwiler BH Glutamate mediates a slow synaptic response in hippocampal slice cultures. Proc. Roy. Soc. Lond. B 1991 243 221–226.
  • Stratton KR, Worley PF, Baraban JF Pharmacological characterization of phosphoinositide-linked glutamate receptor excitation of hippocampal neurons. Europ. J. Pharmacol. 1990 186 357–361.
  • Curry K, Magnuson DSK, McLennan H, Peet MJ Excitation of rat hippocampal neurones by the stereoisomers of cis- and trans-1-amino-1,3-cyclopentane dicarboxylate. Can. J. Physiol. Pharmacol. 1987 65 2196–2201.
  • McGuinness N, Anwyl R, Rowan M The effects of trans-ACPD on long-term potentiation in the rat hippocampal slice. Neuroreport 1991 2 688–690.
  • Otani S, Ben-Ari Y Metabotropic receptor-mediated long-term potentiation in rat hippocampal slices. Europ. J. Pharmacol. 1991 205 325–326.
  • McGuiness N, Anwyl R, Rowan M Trans-ACPD enhances long-term potentiation in the hippocampus. Europ. J. Pharmacol. 1991 197 231–232.
  • Aniksztejn L, Bregestovski P, Ben-Ari Y Selective activation of quiqualate metabotropic receptor potentiates NMDA but not AMPA responses. Europ. J. Pharmacol. 1991 205 327–328.
  • Baskys A, Malenka RC Trans-ACPD depresses synaptic transmission in the hippocampus. Europ. J. Pharmacol. 1991 193 131–132.
  • Crepel F, Daniel H, Hemart N, Jaillard D Effects of ACPD and AP3 on parallel-fibre-mediated EPSPs of Purkinje cells in cerebellar slices in vitro. Exp. Brain Res. 1991 86 402–406.
  • Schoepp DD, Johnson BG, Salhoff CR, McDonald JW, Johnston MV In vitro and in vivo pharmacology of trans- and cis-(±)-1-amino-1,3-cyclopentanedicarboxylic acid: Dissociation of metabotropic and iontropic excitatory amino acid receptor effects. J. Neurochem. 1991 56 1789–1796.
  • Koh J-Y, Palmer E, Cotman CW Activation of the metabotropic glutamate receptor attenuates NMDA neurotoxicity in cortical cultures. Proc. Natl. Acad. Sci. USA 1991 88 9431–9435.
  • Opitz T, Reymann KG Blockade of metabotropic glutamate receptors protects rat CA1 neurons from hypoxic injury. Neuroreport 1991 2 455–457.
  • Schoepp DD, Johnson BG, Smith ECR, McQuaid LA Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid. Mol. Pharmacol. 1990 38 222–228.
  • Manzoni OJJ, Poulat F, Do E, Sahuquet A, Sassetti I, Bockaert J, Sladeczek FAJ Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons. Europ. J. Pharmacol. Mol. Biol. Sect. 1991 207 231–241.
  • Izumi Y, Clifford DB, Zorumski CF 2-Amino-3-phosphonopropionate blocks the induction and maintenance of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 1991 122 187–190.
  • Behnisch T, Fjodorow K, Reymann KG L-2-Amino-3-phosphonopropionate blocks late synaptic long-term potentiation. Neuroreport 1991 2 386–388.
  • Stratton KR, Worley PF, Baraban JM Pharmacological characterization of phosphoinositide-linked glutamate receptor excitation of hippocampal neurons. Europ. J. Pharmacol. 1990 186 357–361.
  • Adamson P, Hajimohammadreza I, Brammer MJ, Campbell IC, Meldrum BS Presynaptic glutamate/quisqualate receptors: Effects on synaptosomal free calcium concentrations. J. Neurochem. 1990 55 1850–1854.
  • Krebs MO, Desce JM, Kemel ML, Gauchy C, Gedeheu G, Cheramy A, Glowinski J Glutamatergic control of dopamine release in the rat striatum: Evidence for presynaptic NMDA receptors on dopaminergic nerve terminals. J. Neurochem. 1991 56 81–85.
  • Wang JKT, Andrews H, Thukral V Presynaptic glutamate receptors regulate noradrenaline release from isolated nerve terminals. J. Neurochem. 1992 58 204–211.
  • Desce JM, Godeheu G, Galli T, Artaud F, Cheramy A Presynaptic facilitation of dopamien release through D-L-alpha-amino-3-hydroxyl-5-methyl-4-isoxazole proprionate receptors on synaptosomes from the rat striatum. J. Pharm. Exp. Ther. 1991 259 692.
  • Overton P, Clark D NMDA increases the excitability of nigrostriatal dopamine terminals. Europ. J. Pharmacol. 1991 201 117–120.
  • Garcia-Munoz M, Young SJ, Groves PM Terminal excitability of the corticostriatal pathway. II Regulation by glutamate receptor stimulation. Brain Res. 1991 551 207–215.
  • Martin D, Bustos GA, Bowe MA, Bray SD, Nadler JV Autoreceptor regulation of glutamate and aspartate release from slices of the hippocampal CA1 area. J. Neurochem. 1991 56 1647–1655.
  • Connick JH, Stone TW Excitatory amino acid antagonists and endogenous amino acid release from rat hippocampal slices. Br. J. Pharmacol. 1988 93 863–867.
  • Fink K, Bonisch H, Gothert M Presynaptic NMDA receptors stimulate noradrenaline release in the cerebral cortex. Europ. J. Pharmacol. 1990 185 115–117.
  • Brammer MJ, Richmond S, Xiang JZ, Adamson P, Hajimohammadreza I, Silva MA, Campbell IC Kainate and quisqualate effects on rat presynaptic cortical receptors are metabotropic and non-additive. Neurosci. Lett. 1991 128 231–234.

References to Patent Literature

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.