895
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Diabetes area participation analysis: a review of companies and targets described in the 2008 – 2010 patent literature

&
Pages 1627-1651 | Published online: 18 Nov 2010

Bibliography

  • Ryden L, Standl E, Bartnik M, Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. Eur Heart J 2007;28(1):88-126
  • DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 2010;53(7):1270-87
  • Virtue S, Vidal-Puig A. It's not how fat you are, it's what you do with it that counts. PLoS Biol 2008;6(9):1819-23
  • Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005;36(3):232-40
  • CDC. National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2007; 2008
  • Anonymous. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008;31(3):596-615
  • Blonde L. Current antihyperglycemic treatment guidelines and algorithms for patients with type 2 diabetes mellitus. Am J Med 2010;123(3A):S12-18
  • Kahn SE, Haffner SM, Heise MA, Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355(23):2427-43
  • Schernthaner G. Diabetes and cardiovascular disease: is intensive glucose control beneficial or deadly? Lessons from ACCORD, ADVANCE, VADT, UKPDS, PROactive, and NICE-SUGAR. Wien Med Wochenschr 2010;160(1-2):8-19
  • Charlish P. 2010. Available from: http://www.scripclinicalresearch.com/therapeutics/Diabetes-sector-continues-to-generate-immense-interest-297521?autnRef=/contentstore/gcpj/codex/b61e1963-79ed-11df-870a-bbcce1c03e31.xml [Cited]
  • Bugianesi E, Moscatiello S, Ciaravella MF, Marchesini G. Insulin resistance in nonalcoholic fatty liver disease. Curr Pharm Des 2010;16(17):1941-51
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5(12):993-96
  • Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009;9(5):407-16
  • Merck Sharp & Dohme Corp.; Metabasis Therapeutics, Inc. WO2010051176; 2010
  • Merck Sharp & Dohme Corp. WO2010047982; 2010
  • TransTech Pharma, Inc. 2009111700; 2009
  • Astellas Pharma, Inc. WO2009041521; 2009
  • Pfizer, Inc. WO2008084300. 2008
  • F. Hoffman-La Roche AG. US2008300279; 2008
  • F. Hoffmann-La Roche AG. WO2008074692; 2008
  • F. Hoffmann-La Roche AG. US2009270505; 2009
  • F. Hoffmann-La Roche AG. WO2009270500; 2009
  • Sirtris Pharmaceuticals, Inc. WO2010019606; 2010
  • Bordone L, Cohen D, Robinson A, SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007;6(6):759-67
  • F. Hoffmann-La Roche AG. WO2008003611; 2008
  • F. Hoffmann-La Roche AG. WO2009132986; 2009
  • F. Hoffmann-La Roche AG. WO2010006940; 2010
  • F. Hoffmann-La Roche AG. US2008293756; 2008
  • F. Hoffmann-La Roche AG. WO2008037628; 2008
  • F. Hoffmann-La Roche AG. WO2010052144; 2010
  • Korner J, Bessler M, Cirilo LJ, Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab 2005;90(1):359-65
  • Merck Sharp & Dohme Corp. WO2010053830; 2010
  • Wolkenberg SE, Thut CJ. Recent progress in the discovery of selective, non-peptide ligands of somatostatin receptors. Curr Opin Drug Discov Devel 2008;11(4):446-57
  • Merck & Co., Inc. WO2008051272; 2008
  • Merck & Co., Inc. WO2009011836; 2009
  • Merck Sharp & Dohme Corp. WO2010056717; 2010
  • Merck & Co., Inc. US2009131451; 2009
  • Merck & Co., Inc.; Banyu Pharmaceutical Co., Ltd. WO2008088692; 2008
  • Merck & Co., Inc. WO2008039327; 2008
  • Banyu Pharmaceutical Co., Ltd. WO2009038021; 2009
  • Merck Frosst Canada Ltd. WO2010025553; 2010
  • Leger S, Black WC, Deschenes D, Synthesis and biological activity of a potent and orally bioavailable SCD inhibitor (MF-438). Bioorg Med Chem Lett 2010;20(2):499-502
  • Medicinal Chemistry Gordon Conference. Available from: http://www.grc.org/programs.aspx?year=2010&program=medchem [Cited]
  • Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 2008;38(7-8):778-801
  • Merck Frosst Canada Ltd. WO2008046226; 2008
  • Merck Frosst Canada Ltd. WO2009073973; 2009
  • Merck Frosst Canada Ltd. WO2009012573; 2009
  • Shimamura K, Nagumo A, Miyamoto Y, Discovery and characterization of a novel potent, selective and orally active inhibitor for mammalian ELOVL6. Eur J Pharmacol 2010;630(1-3):34-41
  • Zhou G, Myers R, Li Y, Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108(8):1167-74
  • Erion M. Liver-targeted drug delivery using HepDirect prodrugs. Microsomes Drug Oxid, 17th Proc Int Symposium; 2008. p. 7-12
  • Wyeth, John, and Brother Ltd. US2009163474; 2009
  • Pfizer, Inc. WO2010013161; 2010
  • Cariou B. The farnesoid X receptor (FXR) as a new target in non-alcoholic steatohepatitis. Diabetes Metab 2008;34(6 Pt 2):685-91
  • Wyeth, John, and Brother Ltd. WO2008100627; 2008
  • Pfizer, Inc.; The Regents of the University of California. WO2008131094; 2008
  • Sanofi-Aventis Deutschland G.m.b.H. WO2008006496; 2008
  • Sanofi-Aventis Deutschland G.m.b.H. WO2010043566; 2010
  • Sanofi-Aventis. WO2009149820; 2009
  • Sanofi-Aventis. WO2008000950; 2008
  • Sanofi-Aventis. WO2008135141; 2008
  • Sanofi-Aventis. EP2023144; 2009
  • Takeda Pharmaceutical Co. Ltd. WO2008121592; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2008136428; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2008011131; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2008067465; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2008001931; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2008044767; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2009110520; 2009
  • Takeda Pharmaceutical Co. Ltd. WO2009057784; 2009
  • Takeda Pharmaceutical Co. Ltd. WO2008143262; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2010001869; 2010
  • Takeda Pharmaceutical Co. Ltd. WO2008016131; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2008010511; 2008
  • Takeda Pharmaceutical Co. Ltd. WO2009145286; 2009
  • Imoto K, Kukidome D, Nishikawa T, Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes 2006;55(5):1197-204
  • Xu J, Wang P, Li Y, The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci USA 2004;101(9):3112-17
  • Bionomics Ltd. WO2008040057; 2008
  • Bionomics Ltd. WO2009043117; 2009
  • Arena Pharmaceuticals, Inc.; Merck & Co. WO2010030360; 2010
  • Abu-Elheiga L, Matzuk MM, Kordari P, Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci USA 2005;102(34):12011-16
  • Mao J, DeMayo FJ, Li H, Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci USA 2006;103(22):8552-7
  • Savage DB, Choi CS, Samuel VT, Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 2006;116(3):817-24
  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001;291(5513):2613-16
  • Abu-Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA 2003;100(18):10207-12
  • Choi CS, Savage DB, Abu-Elheiga L, Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc Natl Acad Sci USA 2007;104(42):16480-5
  • Oh W, Abu-Elheiga L, Kordari P, Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc Natl Acad Sci USA 2005;102(5):1384-9
  • Hoehn KL, Turner N, Swarbrick MM, Acute or chronic upregulation of mitochondrial fatty acid oxidation has no net effect on whole-body energy expenditure or adiposity. Cell Metab 2010;11(1):70-6
  • Olson DP, Pulinilkunnil T, Cline GW, Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake. Proc Natl Acad Sci USA 2010;107(16):7598-603
  • Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1(7285):785-9
  • Harwood HJ Jr, Petras SF, Shelly LD, Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J Biol Chem 2003;278(39):37099-111
  • Corbett JW. Review of recent acetyl-CoA carboxylase inhibitor patents: mid-2007-2008. Expert Opin Ther Pat 2009;19(7):943-56
  • Vandercammen A, Van Schaftingen E. The mechanism by which rat liver glucokinase is inhibited by the regulatory protein. Eur J Biochem 1990;191(2):483-9
  • Agius L. The physiological role of glucokinase binding and translocation in hepatocytes. Adv Enzyme Regul 1998;38:303-31
  • Matschinsky FM. Assessing the potential of glucokinase activators in diabetes therapy. Nat Rev Drug Discov 2009;8(5):399-416
  • Iynedjian PB, Pilot PR, Nouspikel T, Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc Natl Acad Sci USA 1989;86(20):7838-42
  • Dunn-Meynell AA, Routh VH, Kang L, Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons. Diabetes 2002;51(7):2056-65
  • Reimann F, Habib AM, Tolhurst G, Glucose sensing in L cells: a primary cell study. Cell Metab 2008;8(6):532-9
  • Agius L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 2008;414(1):1-18
  • Postic C, Shiota M, Magnuson MA. Cell-specific roles of glucokinase in glucose homeostasis. Rec Prog Horm Res 2001;56:195-217
  • Osbak KK, Colclough K, Saint-Martin C, Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2009;30(11):1512-26
  • Grimsby J, Sarabu R, Corbett WL, Allosteric activators of glucokinase: potential role in diabetes therapy. Science 2003;301(5631):370-3
  • Bonadonna RC, Heise T, Arbet-Engels C, Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab 2010;95(11). Available at http://jcem.endojournals.org/cgi/reprint/jc.2010-1041v1
  • Sarabu R, Berthel SJ, Kester RF, Tilley JW. Glucokinase activators as new type 2 diabetes therapeutic agents. Expert Opin Ther Pat 2008;18(7):759-68
  • Briscoe CP, Tadayyon M, Andrews JL, The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003;278(13):11303-11
  • Itoh Y, Kawamata Y, Harada M, Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003;422(6928):173-6
  • Flodgren E, Olde B, Meidute-Abaraviciene S, GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem Biophys Res Commun 2007;354(1):240-5
  • Steneberg P, Rubins N, Bartoov-Shifman R, The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 2005;1(4):245-58
  • Briscoe CP, Peat AJ, McKeown SC, Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 2006;148(5):619-28
  • Brownlie R, Mayers RM, Pierce JA, The long-chain fatty acid receptor, GPR40, and glucolipotoxicity: investigations using GPR40-knockout mice. Biochem Soc Trans 2008;36(Pt 5):950-4
  • Latour MG, Alquier T, Oseid E, GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 2007;56(4):1087-94
  • Tan CP, Feng Y, Zhou YP, Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 2008;57(8):2211-19
  • Kebede M, Alquier T, Latour MG, The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 2008;57(9):2432-7
  • Alquier T, Poitout V. GPR40: good cop, bad cop? Diabetes 2009;58(5):1035-6
  • Nagasumi K, Esaki R, Iwachidow K, Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes 2009;58(5):1067-76
  • Bharate SB, Nemmani KVS, Vishwakarma RA. Progress in the discovery and development of small-molecule modulators of G-protein-coupled receptor 40 (GPR40/FFA1/FFAR1): an emerging target for type 2 diabetes. Expert Opin Ther Pat 2009;19(2):237-64
  • Soga T, Ohishi T, Matsui T, Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem Biophys Res Commun 2005;326(4):744-51
  • Overton HA, Babbs AJ, Doel SM, Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006;3(3):167-75
  • Chu ZL, Jones RM, He H, A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 2007;148(6):2601-9
  • Semple G, Fioravanti B, Pereira G, Discovery of the first potent and orally efficacious agonist of the orphan G-protein coupled receptor 119. J Med Chem 2008;51(17):5172-5
  • Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 2008;57(9):2280-7
  • Lan H, Vassileva G, Corona A, GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J Endocrinol 2009;201(2):219-30
  • Chu ZL, Carroll C, Alfonso J, A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology 2008;149(5):2038-47
  • Lauffer LM, Iakoubov R, Brubaker PL. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 2009;58(5):1058-66
  • Parker HE, Habib AM, Rogers GJ, Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 2009;52(2):289-98
  • Jones RM, Leonard JN, Buzard DJ, Lehmann J. GPR119 agonists for the treatment of type 2 diabetes. Expert Opin Ther Pat 2009;19(10):1339-59
  • Seckl JR, Walker BR. Minireview: 11beta-hydroxysteroid dehydrogenase type 1- a tissue-specific amplifier of glucocorticoid action. Endocrinology 2001;142(4):1371-6
  • Cooper MS, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab 2009;94(12):4645-54
  • Tannin GM, Agarwal AK, Monder C, The human gene for 11 beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J Biol Chem 1991;266(25):16653-8
  • Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing's disease of the omentum”? Lancet 1997;349(9060):1210-13
  • Brown RW, Chapman KE, Edwards CR, Seckl JR. Human placental 11 beta-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent isoform. Endocrinology 1993;132(6):2614-21
  • Whitworth JA, Stewart PM, Burt D, The kidney is the major site of cortisone production in man. Clin Endocrinol (Oxf) 1989;31(3):355-61
  • Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol 1994;105(2):R11-17
  • Rask E, Olsson T, Soderberg S, Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001;86(3):1418-21
  • Masuzaki H, Paterson J, Shinyama H, A transgenic model of visceral obesity and the metabolic syndrome. Science 2001;294(5549):2166-70
  • Kotelevtsev Y, Holmes MC, Burchell A, 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci USA 1997;94(26):14924-9
  • Morton NM, Holmes MC, Fievet C, Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem 2001;276(44):41293-300
  • Tomlinson JW, Sinha B, Bujalska I, Expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J Clin Endocrinol Metab 2002;87(12):5630-5
  • Hughes KA, Webster SP, Walker BR. 11-Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitors in type 2 diabetes mellitus and obesity. Expert Opin Investig Drugs 2008;17(4):481-96
  • Alberts P, Engblom L, Edling N, Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 2002;45(11):1528-32
  • Alberts P, Nilsson C, Selen G, Selective inhibition of 11 beta-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology 2003;144(11):4755-62
  • Paterson JM, Morton NM, Fievet C, Metabolic syndrome without obesity: hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci USA 2004;101(18):7088-93
  • Morgan SA, Tomlinson JW. 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors for the treatment of type 2 diabetes. Expert Opin Investig Drugs 2010;19(9):1067-76
  • Andrews RC, Rooyackers O, Walker BR. Effects of the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab 2003;88(1):285-91
  • Walker BR, Connacher AA, Lindsay RM, Carbenoxolone increases hepatic insulin sensitivity in man: a novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. J Clin Endocrinol Metab 1995;80(11):3155-9
  • Hawkins M, Hunter D, Kishore P, INCB013739, a selective inhibitor of 11b-hydroxysteroid dehydrogenase type 1 (11bHSD1), improves insulin sensitivity and lowers plasma cholesterol over 28 days in patients with type 2 diabetes mellitus. American Diabetes Association 68th Scientific Sessions; 6 – 10 June 2008; San Francisco, CA; 2008
  • Poirier D. 17beta-Hydroxysteroid dehydrogenase inhibitors: a patent review. Expert Opin Ther Pat 2010;20(9):1123-45
  • Ntambi JM, Miyazaki M, Stoehr JP, Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 2002;99(17):11482-6
  • Rahman SM, Dobrzyn A, Dobrzyn P, Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. Proc Natl Acad Sci USA 2003;100(19):11110-15
  • Rahman SM, Dobrzyn A, Lee SH, Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. Am J Physiol Endocrinol Metab 2005;288(2):E381-7
  • Lee SH, Dobrzyn A, Dobrzyn P, Lack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment. J Lipid Res 2004;45(9):1674-82
  • Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem 2007;282(4):2483-93
  • Kotronen A, Seppanen-Laakso T, Westerbacka J, Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 2009;58(1):203-8
  • Arendt BM, Mohammed SS, Aghdassi E, Hepatic fatty acid composition differs between chronic hepatitis C patients with and without steatosis. J Nutr 2009;139(4):691-5
  • Stefan N, Peter A, Cegan A, Low hepatic stearoyl-CoA desaturase 1 activity is associated with fatty liver and insulin resistance in obese humans. Diabetologia 2008;51(4):648-56
  • Glenmark Pharmaceuticals, S.A. WO2010035052; 2010
  • Farber SJ, Berger EY, Earle DP. Effect of diabetes and insulin of the maximum capacity of the renal tubules to reabsorb glucose. J Clin Invest 1951;30(2):125-9
  • Kanai Y, Lee WS, You G, The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest 1994;93(1):397-404
  • Wright EM. Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 2001;280(1):F10-18
  • van den Heuvel LP, Assink K, Willemsen M, Monnens L. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 2002;111(6):544-7
  • Santer R, Kinner M, Lassen CL, Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 2003;14(11):2873-82
  • Calado J, Soto K, Clemente C, Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria. Hum Genet 2004;114(3):314-16
  • Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev 2005;21(1):31-8
  • Rossetti L, Smith D, Shulman GI, Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 1987;79(5):1510-15
  • Oku A, Ueta K, Arakawa K, T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 1999;48(9):1794-800
  • Katsuno K, Fujimori Y, Takemura Y, Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 2007;320(1):323-30
  • Fujimori Y, Katsuno K, Ojima K, Sergliflozin etabonate, a selective SGLT2 inhibitor, improves glycemic control in streptozotocin-induced diabetic rats and Zucker fatty rats. Eur J Pharmacol 2009;609(1-3):148-54
  • Fujimori Y, Katsuno K, Nakashima I, Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther 2008;327(1):268-76
  • Hussey EK, Clark RV, Amin DM, Single-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy volunteers and patients with type 2 diabetes mellitus. J Clin Pharmacol 2010;50(6):623-35
  • Washburn WN. Evolution of sodium glucose co-transporter 2 inhibitors as anti-diabetic agents. Expert Opin Ther Pat 2009;19(11):1485-99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.