306
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Novel small molecules for the treatment of infections caused by Candida albicans: a patent review (2002 – 2010)

, , PhD &
Pages 381-397 | Published online: 18 Jan 2011

Bibliography

  • Marr KA. Fungal infections in oncology patients: update of epidemiology, prevention, and treatment. Curr Opin Oncol 2009;22:138-42
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007;20:133-63
  • Wisplinghoff H, Bischoff T, Tallent SM, Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004;39:309-17
  • Sims CR, Ostrosky-Zeichner L, Rex JH. Invasive candidiasis in immunocompromised hospitalized patients. Arch Med Res 2005;36:660-71
  • Mishra NN, Prasad T, Sharma N, Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hungarica 2007;54:201-35
  • Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 2004;7:336-41
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol 2001;9:327-35
  • Gruszecki WI, Gagos M, Herec M, Kernen P. Organization of antibiotic amphotericin B in model lipid membranes. A mini review. Cell Mol Biol Lett 2003;8:161-70
  • Ostrosky-Zeichner L. Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010;9:719-27
  • Fanos V, Cataldi L. Amphotericin B-induced nephrotoxicity: a review. J Chemother 2000;12:463-70
  • Jung SH, Lim DH, Jung SH, Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 2009;37:313-20
  • Zarif L, Graybill JR, Perlin D, Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 2000;44:1463-9
  • Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 2005;43:285-318
  • Elewski B, Tavakkol A. Safety and tolerability of oral antifungal agents in the treatment of fungal nail disease: a proven reality. Ther Clin Risk Manage 2005;1:299-306
  • Ortonne P, Korting HC, Viguie-Vallanet C, Efficacy and safety of a new single-dose terbinafine 1% formulation in patients with tinea pedis (athlete's foot): a randomized, double-blind, placebo-controlled study. J Eur Acad Dermatol Venereol 2006;20:1307-13
  • Denning DW. Echinocandin antifungal drugs. Lancet 2003;362:1142-51
  • Ghannoum MA, Kim HG, Long L. Efficacy of aminocandin in the treatment of immunocompetent mice with haematogenously disseminated fluconazole-resistant candidiasis. J Antimicrob Chemother 2007;59:556-9
  • Liu G, Tian Y, Yang H, Tan H. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes, that also influences colony development. Mol Microbiol 2005;55:1855-66
  • Mohrle V, Roos U, Bormann C. Identification of cellular proteins involved in nikkomycin production in Streptomyces tendae Tu901. Mol Microbiol 1995;15:561-71
  • Nix DE, Swezey RR, Hector R, Galgiani JN. Pharmacokinetics of nikkomycin Z after single rising oral doses. Antimicrob Agents Chemother 2009;53:2517-21
  • Sandovsky-Losica H, Shwartzman R, Lahat Y, Segal E. Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin, voriconazole or amphotericin B. J Antimicrob Chemother 2008;62:635-7
  • Ganesan LT, Manavathu EK, Cutright JL, In-vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin Microbiol Infect 2004;10:961-6
  • Hauser D, Sigg HP. Isolierung und Abbau von Sordarin.1. Mitteilung uber Sordarin. Helv Chim Acta 1971;54:1178-90
  • Justice MC, Hsu M, Tse B, Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 1998;273:3148-51
  • Dominiguez JM, Martin JJ. Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 1998;42:2279-83
  • Gargallo-Viola D. Sordarins as antifungal compounds. Curr Opin Anti-infect Investig Drugs 1999;1:297-305
  • Jpn Kokai Tokkyo koho. Antibiotic Zofimarin. JP6240292; 1987
  • Banyu Seiyaku KK. Antifungal substance BE-31405. JP6157582; 1994
  • Coval SJ, Puar MS, Phife DW, SCH57404, an antifungal agent possessing the rare sodaricin skeleton and a tricyclic sugar moiety. J Antibiot 1995;48:1171-2
  • Merck & Co., Inc. A novel sordarin derivative isolated from culture fermentations and functions as antifungal agents. WO051889; 2003
  • Basilio A, Justice M, Harris G, Bioorg. The discovery of moriniafungin, a novel sordarin derivative produced by Morinia pestalozzioides. Med Chem 2006;14:560-6
  • Kamai Y, Kakuta M, Shibayama T, Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother 2005;49:52-6
  • Hanadate T, Tomishima M, Shiraishi N, FR290581, a novel sordarin derivative: synthesis and antifungal activity. Bioorg Med Chem Lett 2009;19:1465-8
  • Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000;46:171-9
  • Gauwerky K, Borelli C, Korting HC. Targeting virulence: a new paradigm for antifungals. Drug Discov Today 2009;14:214-22
  • Alksne LE, Projan SJ. Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 2000;11:625-36
  • Alekshun MN, Levy SB. Targeting virulence to prevent infection: to kill or not to kill? Drug Discov Today Therap Strat 2004;1:483-9
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003;67:400-28
  • Ollert MW, Wende C, Gorlich M, Increased expression of Candida albicans secretory proteinase, a virulence factor, in isolates from human immunodeficiency virus-positive patients. J Clin Microbiol 1995;33:2543-9
  • Wu T, Wright K, Hurst SF, Morrison CJ. Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole. Antimicrob Agents Chemother 2000;44:1200-8
  • Navarathna DH, Hornby JM, Hoerrmann N, Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 2005;56:1156-9
  • Korting HC, Schaller M, Eder G, Effects of the human immunodeficiency virus (HIV) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartyl proteinase of Candida albicans isolates from HIV-infected patients. Antimicrob Agents Chemother 1999;43:2038-42
  • Abad-Zapatero C, Goldman R, Muchmore SW, Structure of secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci 1996;5:640-52
  • Viviani MA, De Marie S, Graybill JR, New approaches to antifungal chemotherapy. Med Mycol 1998;36:194-206
  • Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 2002;50:243-60
  • Kelly SL, Lamb DC, Kelly DE, Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta 5,6-desaturation. FEBS Lett 1997;400:80-2
  • Barker KS, Crisp S, Wiederhold N, Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother 2004;54:376-85
  • Shangai Institute of Pharmaceutical Industry. Polyene diester antibiotics. WO015541; 2009
  • Johnson EM, Warnock DW, Luker J, Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J Antimicrob Chemother 1995;35:103-14
  • Rex JH, Rinaldi MG, Pfaller MA. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother 1995;38:1-8
  • Aventis Pharma S.A. Novel azole or triazole derivatives, method for preparing the same and use thereof as fungicides. WO006436; 2003
  • Ranbaxy Laboratories Ltd. Azole compounds as anti-fungal agents. WO008391; 2003
  • FDC Ltd. 1,2,4-Triazol-1-yl-propan-2-ol derivatives as anti-fungal agents. WO068142; 2003
  • Italfarmaco S.p.A. Azole derivatives useful as antifungal agents with reduced interaction with metabolic cytochromes. WO040156; 2005
  • Daewoong Pharmaceutical Co. Ltd. Antifungal triazole derivatives. WO109933; 2006
  • Daewoong Pharmaceutical Co. Ltd. Novel antifungal triazole derivatives. WO052943; 2007
  • Council of Scientific & Industrial Research. Antifungal compounds containing benzothiazinone, benzoxazinone or benzoxazolinone and process thereof. WO046931; 2010
  • Ruiz-Herrera J, San-Blas G. Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 2003;3:77-91
  • Pang JY, Qin Y, Chen WH, Synthesis and DNA-binding affinities of monomodified berberines. Bioorg Med Chem 2005;13:5835-40
  • Korea Research Institute of Bioscience and Biotechnology. Berberrubine derivatives having antifungal activity. WO094548; 2007
  • Park KD, Lee JH, Kim SH, Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorg Med Chem Lett 2006;16:3913-16
  • Douglas CM. Fungal beta(1,3)-D-glucan synthesis. Med Mycol 2001;39(Suppl 1):55-66
  • Liu J, Balasubramanian MK. 1,3-beta-Glucan synthase: a useful target for antifungal drugs. Curr Drug Targets Infect Disord 2001;1:159-69
  • Wiederhold NP, Lewis RE. The echinocandin antifungals: an overview of the pharmacology, spectrum and clinical efficacy. Expert Opin Investig Drugs 2003;12:1313-33
  • Fujisawa pharmaceutical collab. Antifungal cyclic lipopeptides. WO005463; 2005
  • Astellas Pharma, Inc. Polypeptide compounds. EP2204379; 2010
  • UCB Pharma S.A. Substituted aniline derivatives. WO012524; 2008
  • Schering Corp. Pyridazinone derivatives useful as glucan synthase inhibitors. WO115381; 2008
  • Barbaro R, Betti L, Botta M, Synthesis, biological evaluation, and pharmacophore generation of new pyridazinone derivatives with affinity toward alpha(1)- and alpha(2)-adrenoceptors. J Med Chem 2001;44:2118-32
  • Sonmez M, Berber I, Akbas E. Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. Eur J Med Chem 2006;41:101-5
  • Schering Corp. Piperazine-substituted pyridazinone derivatives useful as glucan synthase inhibitors. WO115385; 2008
  • Merck & Co., Inc. Antifungal agents. WO127012; 2007
  • Merck Sharp & Dohme Corp. Antifungal agents. WO019206; 2010
  • Pelaez F, Cabello A, Platas G, The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 2000;23:333-43
  • Shepherd MG. Cell envelope of Candida albicans. Crit Rev Microbiol 1987;15:7-25
  • Kawakami K, Kanai K, Fujisawa T, Heterocyclic compounds having antifungal activity. US191395; 2007
  • Daiichi Pharmaceutical Co., Ltd. Imidazo [1,2-a] pyridine derivative. WO064422; 2003
  • Sumitomo Chemical Co., Ltd. Imidazo [1,2-a] pyrimidines and fungicide compositions containing the same. WO022850; 2003
  • Revankar GR, Matthews TR, Robins RK. Synthesis and antimicrobial activity of certain imidazo [1,2-a] pyrimidines. J Med Chem 1975;18:1253-5
  • Buurman ET, Westwater C, Hube B, Molecular analysis of CaMnt1p, a mannosyl transferase important for adhesion and virulence of Candida albicans. Proc Natl Acad Sci USA 1998;95:7670-5
  • Arroyo-Flores BL, Rodriguez-Bonilla J, Villagomez-Castro JC, Biosynthesis of glycoproteins in Candida albicans: activity of mannosyl and glucosyl transferases. Fungal Genet Biol 2000;30:127-33
  • Strahl-Bolsinger S, Gentzsch M, Tanner W. Protein O-mannosylation. Biochim Biophys Acta 1999;1426:297-307
  • Oxford Glycosciences (UK) Ltd. Benzylidene thiazolidinediones and their use as antimycotic agents. WO070239; 2003
  • Orchard MG, Neuss JC, Galley CM, Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 2004;14:3975-8
  • Bristol-Myers Squibb Co. Novel thio-derivatives of sordarin as antifungal agents. WO22567; 2002
  • Merck & Co., Inc. Antifungal agents of sordarin derivatives. WO0007878; 2003
  • Merck & Co., Inc. 11-hydroxysordarin and a process for producing it using Actinomyces ssp. US6228622; 2001
  • Astellas Pharma, Inc. Sordarin derivatives for preventing or treating infectious diseases caused by pathogenic microorganisms. WO131246; 2009
  • Stewart K, Abad-Zapatero C. Candida proteases and their inhibition: prospects for antifungal therapy. Curr Med Chem 2001;8:941-8
  • Bein M, Schaller M, Korting HC. The secreted aspartic proteinases as a new target in the therapy of candidiasis. Curr Drug Targets 2002;3:351-7
  • Cassone A, De Bernardis F, Mondello F, Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis 1987;156:777-83
  • Freie Universitat Berlin. Pepstatin A derivatives. WO133188; 2009
  • Universita degli Studi di Firenze, Istituto Superiore di Sanita. Bicyclic peptidomimetic inhibitors of aspartyl-proteases for the treatment of infectious diseases. WO060904; 2010
  • Trabocchi A, Mannino C, Machetti F, Identification of inhibitors of drug-resistant Candida albicans strains from a library of bicyclic peptidomimetic compounds. J Med Chem 2010;53:2502-9
  • Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2007;2:1-33
  • Zhang LJ, Falla TJ. Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 2006;7:653-63
  • Guani-Guerra E, Santos Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 2010;135:1-11
  • C3 Jian, Inc. Antibacterial and antifungal peptides. WO080836; 2010
  • The Board of Regents of the University of Oklahoma. Antifungal peptides and methods of use thereof. WO016593; 2007
  • Shafer WM, Martin LE, Spitznagel JK. Cationic antimicrobial proteins isolated from human neutrophil granulocytes in the presence of di-isopropyl fluorophosphate. Infect Immun 1984;45:29-35
  • Shafer WM, Martin LE, Spitznagel JK. Late intraphagosomal hydrogen ion concentration favors the in vitro antimicrobial capacity of a 37-kilodalton cationic granule protein of human neutrophil granulocytes. Infect Immun 1986;53:651-5
  • Pereira HA, Erdem I, Pohl J, Spitznagel JK. Synthetic bactericidal peptide based on CAP37: a 37-kDa human neutrophil granule-associated cationic antimicrobial protein chemotactic for monocytes. Proc Natl Acad Sci USA 1993;90:4733-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.