870
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Advances in iron chelation: an update

, &
Pages 819-856 | Published online: 30 Mar 2011

Bibliography

  • Bergeron RJ, McManis JS. The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 237-73
  • Crichton RR, Ward RJ. An overview of iron metabolism: molecular and cellular criteria for the selection of iron chelators. Curr Med Chem 2003;10:997-1004
  • Neilands JB. The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 151-67
  • Hemoglobin Tutorial, “University of Massachusetts Amherst. N.p., n.d. Web. 23 Oct. 2009. Available from: http://www.umass.edu/molvis/tutorials/hemoglobin/index.htm
  • Available from: http://rpi.edu/dept/bcbp/molbiochem/MBWeb/mb1/part2/redox.htm
  • Bezkorovainy A. Biochemistry of nonheme iron. Plenum Press, New York; 1980. p. 343
  • Scheibel LW. Plasmoidal parasite biology: carbohydrate metabolism and related organeller function during various stages of the life-cycle. In: Wernsdorfer W, McGregor I, editors, Malaria. Churchill Livingstone, Edinburgh; 1988. p. 171
  • Sheibel LW, Adler A. Antimalarial activity of selected aromatic chelators. Mol Pharmacol 1980;18:320-25
  • Baily-Wood R, Blayney LM, Muir JR, The effects of iron deficiency on rat liver enzymes. Br J Exp Pathol 1975;56:193-98
  • Wrigglesworth JM, Baum H. Iron in biochemistry and medicine II. In: Jacobs A, Worwood M, editors. Academic Press, New York; 1980. p. 29
  • Cook L, Grant PT, Kermak WO. Proteolytic enzymes of the erythrocytic form of rodent and simian species of malarial plasmodia. Exp J Parasitol 1961;11:372-9
  • McCance RA, Widdowson EM. Absorption and excretion of iron. Lancet 1937;2:680-84
  • Crichton RR. Inorganic biochemistry of iron metabolism from molecular mechanisms to clinical consequences. Wiley, New York; 2001. p. 326
  • Buss JL, Torti FM, Torti SV. The role of iron in cancer therapy. Curr Med Chem 2003;10:1021-34
  • Ponka P. The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 1-32
  • Hider RC, Silva AM, Podinovskaia M. Monitoring the efficiency of iron chelation therapy: the potential of nontransferrin-bound iron. Ann NY Acad Sci 2010;1202:94-9
  • Shvartsman M, Kikkeri R, Shanzer A, Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism:biological and clinical implications. Am J Physiol Cell Physiol 2007;293:1383-94
  • Bothwel TJ, Charlton RW, Cook JD, Iron metabolism in man. Blackwell Scientific, Oxford; 1979. p. 17-26
  • Cricton RR. Inorganic biochemistry of iron absorption from molecular mechanisms to clinical consequences. Wiley, New York; 2001. p. 326
  • Brissot P, Haemochromatosis. New understanding, new treatments. Gastroenterol Clin Biol 2009;33:859-67
  • Walter PB, Harmatz P, Vichinsky E. Iron metabolism and iron chelation in sickle cell disease. Acta Haematol 2009;122:174-83
  • Farrar JE, Nater M, Caywood E, Abnormalities of the large ribosomal subunit protein RPl35a in diamond-blackfan anemia. Blood 2008;112:1582-592
  • Gutteridge JM, Halliwell B. In reactive oxygen species in biological systems: an interdisciplinary approach. In: Gilbert DL, editor. Kluwer Academic/Plenum Publishers; 1999. p. 189-218
  • Voet D, Voet JG. Biochemistry. John Wiley and Sons; 1990. p. 754
  • Weinberg ED. Human lactoferrin: a novel therapeutic with broad spectrum potential. J Pharmacol 2001;53:1303-10
  • Voet D, Voet JG. Biochemistry. John Wiley and Sons; 1990. p. 383
  • Waddington RJ, Moseley R, Embery G. Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis 2000;6:138-51
  • Baker EN, Baker HM. Lactoferrin, molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 2005;62:2531-39
  • Arslan SY, Leung KP, Wu CD. The effect of lactoferrin on oral bacterial attachment. Oral Microbiol Immunol 2009;5:411-16
  • European Medicines Agency Pre-authorisation Evaluation of Medicines for Human Use E-mail:[email protected]. Available from: http://www.emea.europa.eu,Doc. ef.: EMEA/COMP/392984/2009
  • Faure P, Rossini E, Lafond JL, Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets. J Nutr 1997;127:103-07
  • Fibach E, Rachmilewitz EA. The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann NY Acad Sci 2010;1202:10-6
  • Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis 2010;21:5-11
  • Available from: http://www.thalassemia.org/index.php?option=com_content&view=article&id=19&Itemid=2
  • Pasvol G. Protective hemoglobinopathies and plasmodium falciparum transmission. Nat Genet 2010;42:284-85
  • Weinberg ED, Moon J. Malaria and iron: history and review. Drug Metab Rev 2009;41:644-62
  • Eshghi P, Zadeh-Vakili A, Rashidi A, An unusually frequent beta-thalassemia mutation in an Iranian province. Hemoglobin 2008;32:387-92
  • Gabutti V, Piga A. Results of long-term iron chelating therapy. Acta Haemotologica 1996;95:26-36
  • Zurlo MG, De Stefano P, Bronga-Pigantti A, Survival and causes of death in thalassemia major. Lancet 1989;2:27-30
  • Sonakul D, Thakemgpol K, Pacharee P. Cardiac pathology in 76 thalassemic patients. Birth Defects Original Article Ser 1988;23:177-91
  • Olivieri NF. Long-term therapy with deferiprone. Acta Haematol 1996;95:37-48
  • Masuda T, Goto F, Yoshihar T, The universal mechanism for iron translocation to the ferroxidase site in ferritin, which is mediated by the well conserved transit site. Biochem Biophys Res Commun 2010;400:94-9
  • Kidane TZ, Sauble E, Linder MC. Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol 2006;291:445-55
  • Woodward M. Serum ferritin. In: Cook JD, editor, Methods in hematology. Volume 1. Churchill-Livingstone, New York; 1980. p. 59-89
  • Woodward M, Thorpe SJ, Heath A, Stable lyophilized reagents for the serum ferritin assay. Clin Lab Haematol 1991;13:297-305
  • Walters GO, Millar FM, Woodward M. Serum ferritin concentration and iron stores in normal subjects. J Clin Pathol 1973;26:770-72
  • Worwood M. Serum ferritin. Clin Sci 1986;70:215-20
  • Worwood M. Iron metabolism in health and disease. In: Brock JH, Halliday JW, Pippard MJ, Powell LW, editors. W.B. Saunders Co. Ltd., London; 1994. p. 449-77
  • Grady RW, Sable AD, Hilgartner MW, The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 395-406
  • Bacon BR, Tavil AS. Role of the liver in normal iron metabolism. Semin Liver Dis 1984;4:181-92
  • Kawabata H, Yang R, Hirama T, Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999;274:20826-32
  • Pietrangelo A. Hereditary haemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 2010;139:393-408
  • Pietrangelo A. Physiology of iron transport and the haemochromatosis gene. Am J Physiol Gastrointest Liver Physiol 2001;282:403-14
  • Gardenghi S, Ramos P, Follenzi A, Hepcidin and Hfe in iron overload in beta-thalassemia. Ann NY Acad Sci 2010;1202:221-5
  • McKie G, Barrow D, Latunde-Dada GO, An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 2001;291:1755-59
  • McKie AT. The role of Dcytb in iron metabolism:an update. Biochem Soc Trans 2008;36:1239-41
  • Vulpe CD, Kuo YM, Murphy TL, Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the SLA mouse. Nat Genet 1999;231:195-99
  • Hudson DM, Curtis SB, Smith VC, Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic beta-cells. Am J Physiol Gastrointest Liver Physiol 2010;298:25-32
  • Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 2000;275:19906-12
  • Simonis G, Mueller K, Schwarz P, The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction. Peptides 2010;9:1786-90
  • Fleming RE, Sly WS. Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci USA 2001;98:8160-62
  • Nemeth E. Hepcidin in beta-thalassemia. Ann NY Acad Sci 2010;1202:31-5
  • Gardenghi S, Ramos P, Follenzi A, Hepcidin and Hfe in iron overload in beta-thalassemia. Ann NY Acad Sci 2010;1202:221-25
  • Motekaitis R, Martel AE. Stabilities of the Iron (III) chelates of 1,2-dimethyl-3-hydroxy-4-pyridinine and related ligands. Inorg Chim Acta 1991;183:71-80
  • Jansson PJ, Hawkins CL, Lovejoy DB, The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: an EPR study. J Inorg Biochem 2010;104:1224-28
  • Schnelbi HP, Hassan I, Hamilton KO, The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 131-49
  • Hider RC, Porter JB, Singh S. The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 353-71
  • Hider RC, Liu ZD. Emerging understanding of the advantages of small molecules such as hydroxypyridinones in the treatment of iron overload. Curr Med Chem 2003;10:1051-64
  • Ma Y, Hider C. Design and synthesis of fluorine-substituted 3-hydroxypyridin-4-ones. Tetrahedron Lett 2010;51:5230-33
  • Kell DB. Iron behaving badly, inappropriate iron chelation as a major contributor to the etiology of vascular and other progressive inflammatory and degenerative diseases. Available from: http://creativecommons.org/licenses/by-sa/3.0/ and http://www.bio-medcentral.com
  • Budzikiewicz H, in Progress in the Chemistry of Organic Natural Products, Kinghorn AD, Falk H, Kobayashi J, Eds, Springer Wein, New York, 2010, pp 1-76
  • Gross K, Aumiller J, Gelzer J, editors, Desferrioxamine: desferal; MMW Pharmaceutical Award 91, history, clinical value, perspective, Symposium on the Occasion of the Award Presentation at the Swiss Federal Institute of Technology, Zurich, MMV Mediizin Verlag GmbH, Munich; 1992
  • Schupp T, Toupet C, Divers M. Cloning and expression of two genes of S. pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 1988;64:179-88
  • Chiani M, Akbarzadeh A, Farhangi M, Optimization of culture medium to increase the production of desferrioxamine B (desferal) in Streptomyces pilosus. Pak J Biol Sci 2010;13:546-50
  • Kontoghiorghes GJ, Pattichi K, Hadjigavriel M, Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfus Sci 2000;23:211-23
  • Marcus RE, Davies G, Bantock HM, Desferrioxamine to improve cardiac function in iron-overloaded patients with thalassemia major. Lancet 1984;1:392-3
  • Andrew I, Schafer AI, Rabinowe S, Long-term efficacy of deferoxamine iron chelation therapy in adults with acquired transfusional iron overload. Arch Intern Med 1985;14:1217-21
  • Olivieri NF, Freedman MH, Koren G, Comparison of oral iron chelator L1 and desferrioxamine in iron-loaded patients. Lancet 1990;336:1275-79
  • Fragatou S, Tsourveloudis I, Fragatou M, Treatment satisfaction (ts) of thalassemia patients with iron chelation therapy in relation to compliance with chelating agents and depression. Haematologica 2009;94:514-18
  • Available from: http://www.desferal.com/prescribing-information.jsp
  • Available from: http://www.pharmacychecker.com/Strength.asp?drugId=82115
  • Available from: http://www.novartis.com.au/PI_PDF/pds.pdf
  • Steinberg MH, Forget BG, Higgs DR, Disorders of hemoglobin: genetics, pathophysiology, and clinical management. Cambridge University Press, New York; 2001. p. 990-1010
  • Ciba-Geigy. US3118823; 1964, Ciba-Geigy. US3153621; 1964, Ciba-Geigy. US3471476; 1969
  • Ciba-Geigy. WO8603445; 1968
  • Gwathmey, Inc. WO2006065888A2; 2006
  • Ihnat PM, Vennerstrom JL, Robinson DH. Synthesis and solution properties of deferoxamine amides. J Pharm Sci 2000;89:1525-36
  • Access Pharmaceuticals, Inc. US5707604; 1998
  • Biomedical Frontiers, Inc. US5217998; 1993
  • Harmatz P, Grady RW, Dragsten P, Phase Ib clinical trial of starch-conjugated deferoxamine (40SD02):a novel long-acting iron chelator. Br J Haemotol 2007;138:374-81
  • Galenello R. Iron chelation: new therapies. Semin Hemotol 2001;38:73-6
  • University of Utah Research Foundation. US20060030619A1; 2006
  • National Research Development Corp. UKB2118176; 1983
  • Kontoghirgous GJ, Sheppard H, Hoffbrand AV, Iron chelation studies using desferrioxamine and the potential iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one in normal and iron loaded rats. J Clin Pathol 1987;40:404-08
  • Porter JB, Weir TB, Marshall L, Dose escalation and iron balance studies with the orally active hydroxypyridin-4-one iron chelator, cp94 in transfusionally iron overloaded humans, Report to British Technology Group; 1992
  • Tsai WC, Ling KH. Stability constants of some metal ion chelates of mimosine and 3,4-dihydroxypyridine. Chin Biochem Soc 1973;2:70-86
  • Available from: http://www.essex.ac.uk/reo/connections/connection3.pdf
  • British Technology Group Ltd. US5480894; 1996
  • Available from: http://www.Ferriprox.com and http://www.thalassemia.org.cy
  • Guidance for Industry (2000): waiver of in vitro bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. U.S. Department of Health and Human Services, Food and Drug Administration;Center for Drug Evaluation and Research (CDER), and Note for Guidance on the Investigation of Bioavailability and Bioequivalence; CPMP/EWP/QWP/1401/98(EMEA); Available from: www.acrossbarriers.de/uploads/media/FCT02-I-0305_BCS.pdf
  • Anderson LJ, Wonke B, Prescott E, Comparison of effects of oral deferiprone and subcutaneous desferrioxamine on myocardial iron concentrations and ventricular fraction in beta-thalassemia. Lancet 2002;360:516-20
  • Piga A, Gaglioti C, Fogliacco E, Comparative effects of deferiprone and deferoxamine on survival and cardiac disease in patients with thalassemia major: a retrospective analysis. Haemotologica 2003;88:489-96
  • Peng CT, Chow KC, Chen JH, Safety monitoring of cardiac and hepatic systems in beta-thalassemia patients with chelating treatment in Taiwan. Eur J Haematol 2003;70:392-97
  • Wood JC, Tyszka M, Carson S, Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood 2004;103:1934-36
  • Tanner MA, Galanello R, Dessi C, Myocardial iron overload in patients with thalassemia major on deferoxamine chelation. J Cardiovas Mag Resonance 2006;8:543-47
  • Pennell DJ, Berdoukas V, Karagiorga M, Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood 2006;107:3738-44
  • Borgna-Pignatti C, Cappellini MD, DeStefano P, Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood 2006;107:3733-37
  • Wood JC, Noetzli L. Cardiovascular MRI in thalassemia major. Ann NY Acad Sci 2010;1202:173-79
  • Olivieri NF, Natthan DG, MacMillan JH, Survival in medically treated patients with homozygous beta-thalassemia. N Engl J Med 1994;331:574-78
  • Barzgar M, Peiravian F, Abedpour F, Causes for hospitalization and death in Iranian patients with beta-thalassemia major. Pediatr Hematol Oncol 2011;28:134-39
  • Giardina PJ, Grady RW. Chelation therapy in beta thalassemia: an optimistic update. Semin Hematol 2001;38:360-66
  • Clark ET, Martell A, Reibenspies J. Crystal structure of the tris 1,2-dimethyl-3-hydroxy-4-pyridinone (DMHP) complex with the Fe(III) ion. Inorg Chim Acta 1992;196:177-83
  • Liu ZD, Hider RC. Design of clinically useful iron(iii)-selective chelators. Med Res Rev 2002;22:26-64
  • Hider RC. Design of therapeutic chelating agents. Biochem Soc Trans 2002;30:751-54
  • Loyesky M, Gordeu VR. Iron chelators in antimalarial chemotherapy. Mechanism of action, resistance and new directions in drug discovery. In: Rosenthal PJ, editor. Humana Press; 2002. p. 307-24
  • Galanello R, Agus A, Campus S, Combined iron chelation therapy. Ann NY Acad Sci 2010;1202:79-86
  • Origa R, Bina P, Augus A, Combined therapy with deferiprone and deferrioxamine in thalassemia major. Haemotologica 2005;90:1309-314
  • Ferriprox Product Monograph, ApoPharma, Inc. Toronto, Ontario, Canada; 2007
  • Unal S, Hazirolan T, Beton B, The cardiac effects of desferrioxamine deferiprone combination therapy and desferrioxamine monotherapy in thalassemic patients. Haematologica 2009;94:514-15
  • Kolnagou A, Kleanthous M, Kontoghiorghes GJ. Reduction of body iron stores to normal range levels in thalassemia by using a deferiprone/ deferoxamine combination and their maintenance thereafter by deferiprone monotherapy. Eur J Haematol 2010;85:430-38
  • Zareifar S, Jabbari A, Cohan N, Efficacy of combined desferrioxamine and deferiprone versus single desferrioxamine therapy in patients with major thalassemia. Arch Iran Med 2009;12:488-91
  • Evans P, Kayyali R, Hider RC, Mechanisms for the shuttling of plasma non-transferrin-bound iron (ntbi) onto deferoxamine by deferiprone. Transl Res 2010;156:55-67
  • Abstracts, 13th International Conference on Oral Chelation in the Treatment of Thalassemia and Other Diseases, Prague; 12 – 15th July 2003; Czech Republic SOSTE Notiziario 2003;3:1-79
  • Kontoghiorghes GS, Kolnagou A. Effective new treatment of iron overload in thalassemia using the ICOC combination therapy protocol of deferiprone (L1) and deferoxamine and of new chelating drugs. Haematologica 2006;91:34-5
  • Kontoghiorghes GJ. The 18th ICOC proceedings in Athens, Greece: new breakthrough in thalassemia leading to the complete treatment of iron overload and to hundreds of patients achieving and maintaining normal body iron stores. Ethical questions on chelation therapy. Hemoglobin 2010;34:199-203
  • Fragatou S, Tsourveloudis I, Tsiapras DT, Long term safety and efficacy of iron chelation with desferrioxamine (DFO) and deferiprone(DFP) in multitransfused thalassemic nine years experience. Haematologica 2009;94:508-09
  • Chuansumrit A, Sirachainan N, Wanichkul S, Combination of oral deferiprone and subcutaneous infusion of desferrioxamine in chelating overloaded iron in pediatric patients with beta-thalassemia disease [abstract 4057]. 51st ASH Annual Meeting and Exposition; 5–8 December 2009; New Orleans, LA
  • Weatherall DJ. Thalassemia as a global health problem:recent progress toward its control in the developing countries. Ann NY Acad Sci 2010;1202:17-23
  • Available from: http://www.edrugnet.co.ul/showprice.asp
  • Piga A, Roggero S, Salussolia I, Deferiprone. Ann NY Acad Sci 2010;1202:75-8
  • Ceci A, Baiardi P, Felisi M, The Safety and effectiveness of deferiprone in a large-scale, 3-year study in Italian patients. Br J Haemotol 2002;118:330-36
  • Cohen AR, Galenello R, Piga A, Safety and effectiveness of long-term therapy with the oral iron chelator deferiprone. Blood 2003;102:1583-587
  • Cohen A, Galenello R, Piga A, A multi-center safety trail of the oral iron chelator deferiprone. Ann NY Acad Sci 1998;850:223-26
  • Galanello R, Campus S. Deferiprone chelation therapy for thalassemia major. Acta Haematol 2009;122:155-64
  • Avicenna Laboratories, Inc. Patent Applied For (2010)
  • Azarkeivan A. Evaluation of gastric side effects of new form of deferiprone, (L1; Entric coated) [abstract No 350]. The 12th International Conference on Thalassaemia and Other Haemoglobinopathies, The 14th Thalassemia International Foundation Conference; 11 – 15 May 2011; Antalya, Turkey
  • El-Alfy M, Tricta TF, El-Beshlawy A, The safety and tolerability of a new formulation of deferiprone in children with transfusional iron overload [abstract 0851]. 13th Congress of the European Hematology Association; 12 – 15 June 2008. Haematologica 2008;93:338
  • El Alfy M, Sari TT, Lee CL, The safety, tolerability, and efficacy of a liquid formulation of deferiprone in young children with transfusional iron overload. J Pediatr Hematol Oncol 2010;32:601-05
  • Apotex Technologies, Inc. WO2009129592A1; 2009
  • Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood 2006;107:3436-41
  • Singh S, Epemolu RO, Dobbin PS, Urinary metabolic profiles in humans and rat of 1,2-dimethyl- and 1,2-diethyl-dibstituted 5-hydroxypyridin-4-ones. Drug Metab Dispos 1992;20:256-61
  • Birch N, Wang X, Chong H-S. Iron chelators as therapeutic iron depletion agents. Expert Opin Ther Patents 2006;16:1533-56
  • Sheppard LN, Kontoghiorghes G. Synthesis and metabolism of l1 and other novel alpha-keto hydroxypyridine iron chelators and their metal complexes. Drugs Today 1992;28:3-10
  • Apotex, Inc. CA379370; 2003
  • BTG International Ltd. US6335353B1; 2002
  • Apotex, Inc. US6476229B1; 2002
  • BTG International Ltd. US20080200520A1; 2008
  • National Research Development Corp. US4866052; 1989
  • Apotex, Inc., US20080096886A1; 2008
  • BTG International Ltd. US6448273B1; 2002
  • BTG International Ltd. US20020068758A1; 2002
  • National Research Development Corp. US4840958; 1989
  • Apotex, Inc. US20090170850A1; 2009
  • National Research Development Corp. US5028411; 1991
  • British Technology Group Ltd. US4585780 (Reissued Re. 35,948); 1998
  • National Research Development Corp. US4585780; 1986
  • Apotex, Inc. US20090170850A1; 2009
  • Bristol-Myers-Squibb. US20040176326A1; 2004
  • Kruck, TPA. US5814614; 1998
  • Barral K, Balzarini J, Neyts J, Synthesis and antiviral evaluation of cyclic and acyclic 2-methyl-3-hydroxy-4-pyridinone nucleoside derivatives. J Med Chem 2006;49:43-50
  • Apotex, IncUS20080242706A1; 2008
  • British Technology Group Ltd. WO2009103950A1; 2009
  • National Research Development Corp. US5104865; 1992
  • Available from: http://www.medicalnewstoday.com/articles/31442.php
  • Heinz U, Hegetschweiler K, Acklin P, 4-[3,4-Bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid:a novel efficient and selective iron(III) complexing agent. Angew Chem Int Ed 1999;38:2568-69
  • Available from: http://www.us.exjade.com.health-care-professionals/dosing-administration
  • Cappellini MD, Taher A. Deferasirox (Exjade) for the treatment of iron overload. Acta Haematol 2009;122:165-73
  • Aslam N, Mettu P, Marsano-Obando LS, Deferasirox induced liver injury in haemochromatosis. J Coll Physicians Surg Pak 2010;8:551-53
  • Yacobovich J, Stark P, Barzilai Birenbaum S, Acquired proximal renal tubular dysfunction in beta-thalassemia patients treated with deferasirox. J Pediatr Hematol Oncol 2010;32:564-67
  • Available from: http://www.us.exjade.com/index.jsp
  • Available from: http://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsfor humanmedicalproducts, Posted 02/18/2010
  • Porter JB. Deferasirox-current knowledge and future challenges. Ann NY Acad Sci 2010;1202:87-93
  • Pennell D, Porter JB, Cappellini MD, Efficacy and safety of deferasirox in reducing myocardial siderosis in patients with beta-thalassemia major. Haematologica 2009;94:74-5
  • Pennell D, El-Beshlawy A, Sutcharitchan P, Prevention of cardiac iron accumulation with once daily oral deferasirox therapy in regularly transfused patients with beta-thalassaemia major. Haematologica 2009;94:433-34
  • Porter JB, Athanasiou-Metaxa M, Bowden DK, Improved patient satisfaction, adherence and health-related quality of life with deferasirox (Exjade®) in beta-thalassemia patients previously receiving other iron chelation therapies. Blood 2009;114:980-81
  • Available from: http://www.thalforum/forums/iron-chelation-talk
  • Available from: http://www.arasto.com
  • Available from: http://www.osvahpharma.com
  • Delea TE, Sofrygin O, Thomas SK, Cost effectiveness of once-daily oral chelation therapy with deferasirox versus infusional deferoxamine in transfusion-dependent thalassaemia patients: US healthcare system perspective. PharmacoEconomics 2007;25:329-42
  • Waldmeier F, Bruin GJ, Glaenzel U, Pharmacokinetics, metabolism, and disposition of deferasirox in beta-thalassemic patients with transfusion-dependent iron overload who are at pharmacokinetic steady state. Drug Metab Dispos 2010;38:808-16
  • Novartis. WO9749395; 1997
  • Novartis. US6465504B1; 2002
  • Novartis. US20050080120A1; 2005
  • Novartis. US7074815B2; 2006
  • Novartis. US6723742B2; 2004
  • Novartis. US20090306160A1; 2009
  • Novartis. US20050080120A1; 2005
  • Lipinski CA, Lombardo F, Dominy BW, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Discov Rev 2001;46:3-26
  • Tam TF, Leung-Toung R, Li W, Iron chelator research: past, present and future. Curr Med Chem 2003;10:983-95
  • Bergeron RG, Wiegand J, MaManis JS, Design, synthesis and testing of non-nephrotoxic desazadesferrithiocin polyether analogues. J Med Chem 2008;51:3913-23
  • Barton JC. Drug evaluation: deferitrin (GT-56-252;NaHBED) for iron overload disorders. Invest Drugs 2007;10:270-81
  • Barton JC. Drug evaluation: deferitrin for iron overload disorders. Invest Drugs 2007;10:480-90
  • Samuni AM, Afeworki M, Stein W, Multifunctional antioxidant activity of HBED iron chelator. Free Radic Biol Med 2001;15:170-77
  • Bissett DL, McBride JF. Synergistic topical photoprotection by a combination of the iron chelator 2-frildioxime and sunscreen. J Am Acad Dermatol 1996;35:546-49
  • Hasinoff BB, Abram ME, Barnabe N, The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Mol Pharmacol 2001;59:453-61
  • Funk CD. Prostaglandins and leukotrienes:advances in eicosanoid biology. Science 2001;294:1871-75
  • Available from: http://www.nlm.nih.gov./medicineplus/druginfo/meds
  • Gelvan D, Berg E, Saltman P, Time-dependent modifications of ferric-adriamycin. Biochem Pharmacol 1990;15:1289-95
  • Ekeltchik I, Gun J, Lev O, Bis(hydroxyamino)triazines:versatile and high-affinity tridentate hydroxylamine ligands for selective iron(III) chelation. Roy Soc Chem Dalton Trans 2006:1285-93
  • Ferrali M, Nonati D, Bambagioni S, 3-Hydroxy-(4H)-benzopyran-4-ones as potential iron chelating agents in vivo. Bioorg Med Chem 2001;9:3041-47
  • Neilands JB. Microbial iron compounds. Annu Rev Biochem 1981;50:715-31
  • Zhu L, Zhoum B, Chen, Inhibitory mechanisms of heterocyclic carboxaldehyde thiosemicabazones for two forms of human ribonucleotide reductase. Biochem Pharmacol 2009;78:1178-85
  • Leem SH, Park JE, Kim IS, The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol Cells 2003;15:55-61
  • Liu ZD, Hider RC. Design of iron chelators with therapeutic application. Coord Chem Rev 2002;232:151-71
  • Hershko C, Konijn AM, Nick HP, ICL670A: a new synthetic oral chelator: evaluation in hypertransfused rats with selective radioiron probes of hepatocellular and reticuloendothelial iron stores and in iron-loaded rat heart cells in culture. Blood 2001;97:1115-22
  • Nurchi VM, Crisponi G, Pivetta T, Potentiometric, spectrophotometric and calorimetric study on iron(III) and copper(II) complexes with 1,2-dimethyl-3-hydroxy-4-pyridinone. J Inorg Biochem 2008;102:684-92
  • Hider R. Potential protection from toxicity by oral iron chelators. Toxicol Lett 1995;82:961-67
  • Liu ZD, Layyali RS, Hider RC, Design, synthesis, and evaluation of novel 2-substituted 3-hydroxypyridin-4-ones:structure-activity investigation of metalloenzyme inhibition by iron chelators. J Med Chem 2002;45:631-39
  • Bozkurt G. Results from the North Cyprus thalassemia prevention program. Hemoglobin 2007;31:257-64
  • Pietrangelo A. Iron chelation beyond transfusion iron overload. Am J Hematol 2007;82:1142-46
  • Molina-Holgado F, Hider RC, Gaeta A, Metals ions and neurodegeneration. Biometals 2007;20:639-54
  • Whitnall M, Richardson DR. Iron: a new target for pharmacological intervention in neurodegenerative diseases. Semin Pediatric Neurol 2006;13:186-97
  • Rivera-Mancia S, Perez Neri I, Rios C, The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010;186:184-99
  • Cuajungco MP, Frederickson CJ, Bush AI. Amyloid-beta metal interaction and metal chelation. Subcell Biochem 2005;38:235-54
  • Lehmann DJ, Schuur M, Warden DR, Transferrin and HFE genes interact in Alzheimer's disease risk: the epistasis project. Neurobiol Aging 2010. [Epub ahead of print]
  • Raman B, Ban T, Yamaguchi K, Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid {beta} peptide. J Biol Chem 2005;280:16157-62
  • Gal S, Zheng H, Fridkin M, Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 2010;17:15-27
  • Zorzi G, Chiapparini L, Solari A, Efficacy and safety of iron chelating agent deferiprone in patients with pantothenate kinase-associated neurodegeneration (PKAN) [abstract 207]. 14th International Congress of Parkinson's Disease and Movement Disorders; 13 – 17 June 2010; Buenos Aires, Argentina
  • Roy S, Preston JE, Hider RC, Glucosylated deferiprone and its brain uptake: implications for developing glycosylated hydroxypyridinone analogues intended to cross the blood-brain barrier. J Med Chem 2010;53:5886-89
  • Boddaert N, Sang KHLQ, Rotig A, Selective iron chelation in Friedreich's ataxia: biologic and clinical implications. Blood 2007;110:401-8
  • Weinreb O, Amit T, Mandel S, Neuroprotective multifunctional iron chelators:from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 2010;15:919-49
  • Horowitz MP, Greenamyre JT. Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 2010;20:551-68
  • Richardson DR, Huang ML, Whitnall M, The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich's ataxia. J Mol Med 2010;88:323-29
  • Lim CK, Kalinowski DS, Richardson DR. Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich's ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class. Mol Pharmacol 2008;74:225-35
  • Storr T, Merkel M, Song-Zhao GX, Synthesis, characterization, and metal coordinating ability of multifunctional carbohydrate-containing compounds for Alzheimer's therapy. J Am Chem Soc 2007;129:7453-63
  • Liu G, Men P, Perry G, Nanoparticles and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol 2010;610:123-44
  • Liu G, Men P, Perry G, Chapter 5-Development of iron chelator-nanoparticle conjugates as potential therapeutic agents for Alzheimer disease. Prog Brain Res 2009;180:97-108
  • Hider RC, Ma Y, Molina-Holgado F, Iron chelation as a potential therapy for neurodegenerative disease. Biochem Soc Trans 2008;36:1304-08
  • Bobbington D, Monck NJT, Gauer S, 3,5-Disubstituted-4-hydroxyphenyls linked to 3-hydroxy-2-methyl-4(1H)-pyridinone:potent inhibitors of lipid peroxidation and cell toxicity. J Med Chem 2000;43:2779-82
  • Schugar H, Green D, Bowen M, Combating Alzheimer's disease with multifunctional molecules designed for metal passivation. Angew Chem Int Ed 2007;46:1716-18
  • Moussavian MR, Slotta JE, Kollmar O, Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators. Langenbecks Arch Surg 2008;393:303-10
  • Tang WH, Wu S, Wong TM, Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic Biol Med 2008;45:602-10
  • Lundberg JO, Witzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 2008;7:156-67
  • Culotta E, Koshland DE Jr. NO news is good news. Science 1992;258:1862-65
  • Karimian K. Imidazo[2,1-b]thiazoles and their use as pharmaceuticals. Expert Opin Ther Pat 2009;19:1
  • Megson IL. Nitric oxide donor drugs. Drugs Future 2000;25:701-15
  • Wang PG, Xian M, Tang X, Nitric oxide donors:chemical activities and biological applications. Chem Rev 2002;101:1091-34
  • Richardson DR, Mouralian C, Ponka P, Development of potential iron chelators for the treatment of Friedreich's ataxia: ligands that mobilize mtochondrial iron. Biochem Biophys Acta 2001;1526:133-40
  • Liang LP, Jarrett SG, Patel M. Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. J Neurosci 2008;28:11550-56
  • Hermes-Lima M, Nag E, Ponka P, The iron chelator pyridoxal isonicotinoyl hydrozone (PHI) protects plasmid pUC-18 DNA against .OH-mediated strand breaks. Free Radical Biol Med 1998;25:857-80
  • Darnell G, Richardson DR. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: the effect of the ligands on molecular targets involved in proliferation. Blood 1999;94:781-92
  • Thangarajah H, Vial IN, Grogan RH, HIF-1alpha dysfunction in diabetes. Cell Cycle 2010;9:75-9
  • Queen's University at Kingston, Ontario, Canada. US20030229144A1; 2003
  • Regents of the University of California. CA2185661; 1996
  • Kilyk & Bowersox P.L.L.C. US20050267015A1; 2005
  • University of Florida Research Foundation, Inc. US20080255081A1; 2008
  • University of Florida. US20060211746A1; 2006
  • University of Florida. WO2004017959A2; 2004
  • University of Florida. US20040132789A1; 2004
  • DMI Biosciences Inc., US20100249016A1; 2010
  • British Technologies Group Ltd. WO9403169; 1994
  • Technion Research and Development Foundation and Yeda Research and Development Co. Ltd. WO2004041151A2; 2004
  • Sawyer DB, Peng X, Chen B, Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 2010;532:105-13
  • Carpenter JP, Pennell DJ. Role of T2* magnetic resonance in monitoring iron chelation therapy. Acta Haematol 2009;122:146-54
  • Hasinoff BB. The use of dexrazoxane for the prevention of anthracycline extravasation injury. Expert Opin Investig Drugs 2008;17:217-23
  • Lebrecht D, Geist A, Ketelsen UP, Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 2007;151:771-78
  • Bendova P, Mackova E, Haskova P, Comparison of clinically used and experimental iron chelators for protection against oxidative stress-induced cellular injury. Chem Res Toxicol 2010;23:1105-14
  • Sterba M, Popelova O, Simunek T, Iron chelation-afforded cardioprotection against chronic anthracycline cardiotoxicity: a study of salicylaldehyde isonicotinoyl hydrazone (SIH). Toxicol 2007;235:150-66
  • Simunek T, Sterba M, Popelova O, Anthracycline toxicity to cardiomyocytes or cancer cells is differently affected by iron chelation with salicylaldehyde isonicotinoyl hydrazone. Br J Pharmacol 2008;155:138-48
  • Simunek T, Klimtova I, Kaplanova J, Study of daunorubicin cardiotoxicity prevention with pyridoxal isonicotinoyl hydrazone in rabbits. Pharmacol Res 2005;51:223-31
  • Sterba M, Popelova O, Simunek T, Cardioprotective effects of a novel iron chelator, pyridoxal 2-chlorobenzoyl hydrazone, in the rabbit model of daunorubicin-induced cardiotoxicity. J Pharmacol Exp Ther 2006;319:1336-47
  • Barnabe N, Zastre JA, Venkataram S, Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radic Biol Med 2002;33:266-75
  • Popelova O, Sterba M, Simunek T, Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. J Pharm Exp Ther 2008;326:259-69
  • Hasinoff B, Patel D, Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radic Biol Med 2003;35:1469-79
  • Gianni L, Herman EH, Lipshultz SE, Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 2008;26:3777-84
  • Haskova P, Kovarikova P, Koubkova L, Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radic Biol Med 2011;50:537-49
  • Pharmacia & Upjohn Co. WO03041736A2; 2003
  • University of Fund. CN101352438; 2009
  • New York University. US5744455; 1998
  • New York University. US5242901; 1993
  • Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neurootol 2000;5:3-22
  • Fetoni AR, Sergi B, Ferraresi A, Alpha-tocopherol protective effects on gentamicin ototoxicity: an experimental study. Int J Audiol 2004;43:166-67
  • Sha SH, Schacht J. Salicylate attenuates gentamicin-induced ototoxicity. Lab Invest 1999;79:807-13
  • Bates DE. Aminoglycoside ototoxicity. Drugs Today 2003;39:277-85
  • Ryals B, Westbrook E, Schcht J. Morphological evidence of ototoxicity of the iron chelator deferoxamine. Hearing Res 1997;112:44-8
  • Novartis Intellectual Property. US20100152101A1; 2010
  • Access Pharmaceuticals, Inc. US6106866; 2000
  • Yiakouvaki A, Savovi J, Al-Qenaei A, Caged-Iron chelators a novel approach towards protecting skin cells against UVA-induced necrotic cell death. J Invest Dermatol 2006;126:2287-95
  • Kitazawa M, Iwasaki K, Sakamoto K. Iron chelators may help prevent photoaging. J Cosmet Dermatol 2006;5:210-17
  • Jurkiewics BN, PhD Thesis in Radiation Biology in the Graduate College of the University of Iowa, August 1995
  • Jurkiewicz BA, Buettner GR. Ulraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobiol 1994;59:1-4
  • Russo PA, Halliday GM. Inhibition of nitric oxide and reactive oxygen species production improves the ability of a sunscreen to protect from sunburn, immunosuppression and photocarcinogenesis. Br J Dermatol 2006;155:408-15
  • Bissett L, McBride JF. Synergistic topical photoprotection by a combination of the iron chelator 2-furildioxime and sunscreen. J Am Acad Dermatol 1996;35:4546-49
  • Mitani H, Koshiishi I, Sumita T, Prevention of the photodamage in the hairless mouse dorsal skin by kojic acid as an iron chelator. Eur J Pharmacol 2001;411:169-74
  • Bisset DL, Bush RD, Chatterjee R. US5478884; 1996
  • Bisset DL. US5739156; 1998
  • Simon P, Gagnebien D. US5776472; 1998
  • Societe L, Oreal SA. US5776472; 1998
  • Cooper CE, Lynagh G, Hoyes KP, The relationship of intramolecular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J Biol Chem 1996;271:10291-99
  • Nocentini G, Federici F, Francetti P, 2,2′-Bipyridyl-6-carbothioamide and its ferrous complex: their in vitro antitumoral activity related to the inhibition of ribonucleotide reductase R2 subunit. Caner Res 1993;53:19-26
  • Hodges YK, Antholine WE, Horwitz LD. Effect on ribonucleotide reductase of novel lipophilic iron chelators: the desferriexochelins. Biochem Biophys Res Commun 2004;315:595-8
  • Nyholm S, Mann GJ, Johansson AG, Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators. J Biol Chem 1993;268:26200-205
  • Kalinowski DS, Yu Y, Sharpe PC, Design, synthesis, and characterization of novel iron chelators: structure−activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. J Med Chem 2007;50:3716-29
  • Kalinowski DS, Richardson D, Future of toxicology-iron chelators and differing modes of action and toxicity. the changing face of iron chelation therapy. Chem Res Toxicol 2007;20:715-20
  • Traynor AM, Lee JW, Bayer GK, A phase II trial of triapine (NSC# 663249) and gemcitabine as second line treatment of advanced non-small cell lung cancer: Eastern Cooperative Oncology Group Study 1503. Invest New Drugs 2010;28:91-7
  • Wadler S, Makower D, Clairmont C, Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor, 3-aminopyridine-2-carboxaldehyde thiosemicarbozone, administered by 96-hour intravenous continuous infusion. J Clin Oncol 2004;22:1553-63
  • Simonart T, Degraef C, Andreim G, Iron chelators inhibit the growth and induce the apoptosis of kaposi's sarcoma cells and of their putative endothelial precursors. J Invest Dermatal 2000;115:893-900
  • Nutting CM, van Herpen CM, Miah AB, Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann Oncol 2009;20:1275-79
  • Yu Y, Kalinowski DS, Kovacevic Z, Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 2009;52:5271-94
  • Kalinowski DS, Richardson DR. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 2005;57:547-83
  • Cavanaugh. US20020137901; 2002
  • Novartis Pharma GmbH. WO2007128820A1; 2007
  • Novartis Corporate Intellectual Property. 20090317489A1; 2009
  • Yuan J, Loveyoy DB, Richardson DR. Novel di-pyridyl-derived iron chelators with marked and selective antitumor activity: in vitro and in vivo assessment. Blood 2004;104:1450-58
  • Yale University. EP0570294B1; 1997
  • Vion Pharmaceuticals, Inc. 6458816B1; 2002
  • Richardson and Lovejoy. US20060252798A1; 2006
  • Gordeul VR, Brittenham GM, Thuma PE. The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 111-30
  • Saeftel M, Sarite RS, Njuguna T, Piperidones with activity against Plasmodium falciparum. Parasitol Res 2006;99:281-86
  • Scott MD, Ranz A, Kuypers FAl, Parasite uptake of deferoxamine: a prerequisite for antimalarial activity. Br J Haematol 1990;75:598-602
  • Reichard P, Ehrenberg A. Ribonucleotide reductase-a radical enzyme. Science 1983;221:514-19
  • Cavanaugh PE, Porter CW, Tukalo D, Characterization of L1210 cell growth inhibition by the bacterial iron chelator parabactin and compound II. Cancer Res 1985;45:4754-59
  • Bergeron RJ. Iron: a controlling nutrient in the proliferative processes. Trends Biochem Sci 1986;11:133-36
  • Vangapandu S, Jain M, Kaur K, Recent advances in antimalarial drug development. Med Res Rev 2007;27:65-107
  • Mohanty D, Ghosh K, Patharem AV, Deferiprone (L1) as an adjuvant therapy for Plasmodium falciparum malaria. Indian J Med Res 2002;115:17-21
  • Walcourt A, Loyevsky M, Lovejoy DB, Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites. Int J Biochem Cell Biol 2004;36:3401-7
  • Mabeza GF, Loyevsky M, Gordeuk VR, Iron chelation therapy for malaria: a review. Pharmacol Ther 1999;81:53-75
  • Smith HJI, Meremikwu M. Iron-chelating agents for treating malaria [review], Cochrane Collaboration, The Cochrane Library, 2010, issue 1. Available from: http://www.thecochranelibrary.com
  • Hider, Peto, Whitehead. CA2100158; 1992
  • British Technology Group Ltd. US5256676; 1993
  • The University of Florida. US7144904B2; 2006
  • Bergeron. US20070232664A1; 2007
  • Bergeron. US20050245579A1; 2005
  • Codd and Schipanski. US20100273847A1; 2010
  • Yeda Research and Development Co. Ltd., Yissum Research and Development Co. of the Hebrew University of Jerusalem. US5430058; 1995
  • Steele VE, Holmes CA, Hawk ET, Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 1999;8:467-83
  • Abeysinghe RD, Roberts PJ, Cooper CE, The environment of the lipoxygenase iron binding site explored with novel hydroxypyridinone iron chelators. J Biol Chem 1996;271:7965-72
  • Liu ZD, Kayyali R, Hider RC, Design, synthesis, and evaluation of novel 2-substituted 3-hydroxypyridin-4-ones:structure-activity investigation of metalloenzyme inhibition by iron chelators. J Med Chem 2002;45:631-39
  • Boyington JC, Gaffney BJ, Amzel LM. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science 1993;260:1482-86
  • Berger W, De Chandt MT, Cairns CB. Zileuton: clinical implications of 5-lipoxygenase inhibition in severe airway disease. Int J Clin Pract 2007;61:663-76
  • Rossi A, Pergola C, Koeberle A, The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br J Pharmacol 2010;161:555-70
  • Zouboulism CC. Zileuton, a new efficient and safe systemic anti-acne drug. Dermatoendocrinol 2009;1:188-92
  • Hyyne J Jr. US20050101659A1; 2005
  • Gray NM. US20010009917A1; 2001
  • Sepacor, Inc. WO9426268; 1994
  • Sepacor, Inc. WO9426269; 1994
  • Baxter International, Inc. WO2007059507A2; 2007
  • Shih N-Y. US20010009918A1; 2001
  • 3M Innovative Properties Co. US20050267145A1; 2005
  • Sepacor, Inc. WO9858644; 1998
  • Pfizer Pharmaceuticals, Inc. WO9615106; 1996
  • The Wellcome Foundation Ltd. WO9425430; 1994
  • The Wellcome Foundation Ltd. WO9402448; 1994
  • Terumo Corp. JP2017146A; 1990
  • Terumo Corp. JP1224342A; 1989
  • Armitage AE, McMichael AJ, Drakesmith H. Reflecting on a quarter century of HIV research. Nat Immunol 2008;9:823-26
  • Drakesmith H, Prentice A. Viral infection and iron metabolism. Nat Rev Microbiol 2008;6:541-52
  • Drakesmith H, Chen N, Ledermann H, HIV-1 Nef down-regulates the hemochromatosis protein HFE, manipulating cellular iron homeostasis. Proc Nat Acad Sci USA 2005;102:11017-22
  • Georgiou NA, Van Der Bruggen T, Oudshoorn M, Human immunodeficiency virus type 1 replication inhibition by the bidentate iron chelators CP502 and CP511 is caused by proliferation inhibition and the onset of apoptosis. Eur J Clin Invest 2002;32:91-6
  • Debebe Z, Ammosova T, Jerebtsova M, Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology 2007;367:324-33
  • Hoque M, Hanauske-Abel HM, Palumbo P, Inhibition of HIV-1 gene expression by ciclopirox and deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirol 2009;6:90-106
  • Debebe ZK, Nium X, Robinson D, Inhibition of HIV-1 transcription by DpT-based iron chelators. FASEB J 2008;22:1191-100
  • Clement PM, Hanauske-Abel HM, Wolff EC, The antifungal drug ciclopirox inhibits deoxyhypusine and praline hydroxylation, endothelial cell growth and angiogenesis in vitro. Int J Cancer 2002;100:491-98
  • Debebe Z, Kumar K, Ammosova T, Inhibition of HIV-1 by DpT-based iron chelators [abstract 79]. ASH Annual Meeting and Exposition; 6 – 9 December 2008; San Francisco
  • Debebe ZK, Kurantsin-Mills J, Ammosovam T, Effect of iron chelators on HIV-1 transcription. FASEB J 2007;21:814-23
  • van Asbeck BS, Georgiou NA, van der Bruggen T, Anti-HIV effect of iron chelators: different mechanisms involved. J Clin Virol 2001;3:141-47
  • Georgiou NA, van der Bruggen T, Oudshoorn M, Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J Infect Dis 2000;181:484-90
  • Traore HN, Meyer D. The effect of iron overload on in vitro HIV-1 infection. J Clin Virol 2004;1:92-8
  • Traore HN, Meyer D. Necrosis of host cells and survival of pathogens following iron overload in an in vitro model of co-infection with human immunodeficiency virus (HIV) and Mycobacterium tuberculosis. Int J Antimicrob Agents 2007;4:465-70
  • Meyer D. Iron chelation as therapy for HIV and Mycobacterium tuberculosis co-infection under conditions of iron overload. Curr Pharm Des 2006;12:1943-47
  • Faculteit Genesskunde Universitat Utrecht. WO0112116868A2; 2001
  • US Army. WO9216200; 1992
  • Gambit International Ltd. EP0753309A2; 1997
  • Snow Brand Milk Products Co. Ltd. EP0584558A2; 1994
  • McCaffrey TA, Pomerantz KB, Sanborn TA, Specific inhibition of eIF-5A and collagen hydroxylation by a single agent. Antiproliferative and fibrosuppressive effects on smooth muscle cells from human coronary arteries. J Clin Invest 1995;95:446-55
  • Rathore S. Small coronary vessel angioplasty: outcomes and technical considerations. Vasc Health Risk Manag 2010;21:915-22
  • Myllyharju J. Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med 2008;40:402-17
  • Vu VV, Emerson JP, Martinho M, Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center. Proc Natl Acad Sci USA 2009;106:14814-19
  • Kantola AK, Ryynanen MJ, Lhota F, Independent regulation of short and long forms of latent TGF-beta binding protein (LTBP)-4 in cultured fibroblasts and human tissues. J Cell Physiol 2010;223:727-36
  • Lee MJ, Kim JW, Yang EG. Hinokitiol activates the hypoxia-inducible factor (HIF) pathway through inhibition of HIF hydroxylases. Biochem Biophys Res Commun 2010;396:370-75
  • Kim YS, Kang KR, Wolff EC. Deoxyhypusine hydroxylase is a Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis. J Biol Chem 2006;281:13217-25, (corrections in J Biol Chem 2007;282:10840)
  • Hales NJ, Beattie JF. Novel inhibitors of propyl 4-hydroxylase. 5. The intriguing structure-activity relationships seen with 2,2'-bipridine and 5,5'-dicarboxylic acid derivatives. J Med Chem 1993;36:3853-58
  • Lancaster DE, McDonough MA, Schofield CJ. Factor inhibiting hypoxia-inducible factor (FIH) and other asparaginyl hydroxylases. Biochem Soc Trans 2004;32:943-45
  • Newfield RS, Giardina PJ, Grady RW, Deferiprone, but not deferoxamine, inhibits biosynthesis of fibrillar procollagens in iron-overloaded thalassemia patients [abstract 943]. Poster presentation at APS/SPR, Washington D.C. Pediatr Res 1996;39:160A
  • Newfield RS, Walker P, Grady RW, Deferiprone: an in-vitro inhibitor of protein hydroxylases vital for matrix formation and cell proliferation [abstract 944]. Poster at APS/SPR, Washington D.C. Pediatr Res 1996;39:160A
  • Hanauske-Abel HM, Popowicz AM. The HAG mechanism: a molecular rationale for the theraeutic application of iron chelators in human diseases involving the 3-oxoacid utilizing dioxygeneases. Curr Med Chem 2003;10:1006-19
  • Park J-H, Aravind L, Wolff EC, Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metallo-enzyme. Procd Natl Acad Sci USA 2006;103:51-6
  • Siddiq A, Ayoub IA, Chavez JC, Hypoxia-inducible factor prolyl 4-hydroxylase inhibition, a target for neuroprotection in the central nervous system. J Biol Chem 2005;280:41732-43
  • Hirsila M, Koivunen P, Xu L, Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J 2005;10:1308-10
  • Shen X, Wan C, Ramaswamy G, Desferrioxamine, L-mimosine, dimethyloxalylglycine increase neoangiogenesis and callus formation following femur fracture in mice. J Orthopaedic Res 2009;27:1298-305
  • Lee MJ, Kim JW, Yang EG. Hinokitiol activates the hypoxia-inducible factor (HIF) pathway through inhibition of HIF hydroxylases. Biochem Biophys Res Commun 2010;396:370-75
  • Kim I, Mogford JE, Witschi C, Inhibition of prolyl 4-hydroxylase reduces scar hypertrophy in a rabbit model of coetaneous scarring. Wound Repair Regen 2003;11:368-72
  • Andrus L, Szabo P, Grady RW, Antiretroviral effects of deoxyhypusyl hydroxylase inhibitors: a hypusine-dependent host cell mechanism for replication of human immunodeficiency virus type 1 (hiv-1). Biochem Pharmacol 1988:55:1807-18
  • McCaffrey TA, Pomerantz, KB, Specific inhibition of eIF-5A and collagen hydroxylation by a single agent. Antiproliferative and fibrosuppressive effects on smooth muscle cells from human coronary arteries. J Clin Invest 1995;95:446-55
  • Abbruzzese A, Hanauske-Abel HM, Park MH, The active site of deoxyhypusyl hydroxylase: use of catecholpeptides and their component chelator and peptide moieties as molecular probes. Biochim Biophys Acta 1991;1077:159-66
  • Hirsila M, Koivunen P, Xu L, Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J 2005;19:1308-10
  • Banerji B, Conejo-Garcia A, Luke A, The inhibition of factor inhibiting hypoxia-inducible factor (FIH) by beta-oxocarboxylic acids. Chem Commun 2005:5438-40
  • McDonough MA, McNeill LA, Tilliet M, Selective inhibition of factor inhibiting hypoxia-inducible factor. J Am Chem Soc 2005;127:7680-91
  • Lee MJ, Kim JW, Yang EG. Hinokitiol activates the hypoxia-inducible factor (HIF) pathway through inhibition of HIF hydroxylases. Biochem Biophys Res Commun 2010;396:370-75
  • Ratcliffe P. Keynote lecture 2: iron and oxygen sensing. The Third Congress of the International BioIron Society and the 8th International Symposium on Microbial Iron Transport, Storage, Mechanism; 7 – 11 June 2009; Porto, Portugal
  • Cornell Research Foundation, Inc. US6080766; 2000
  • Cornell Research Foundation, Inc. US6046219; 2000
  • The Rockefeller University. WO20044005321A2; 2004
  • Isis Innovation Ltd. US20070066576A1; 2007
  • Hoechst Marion Roussel Deutschland. US6093730; 2000
  • Department of Health and Human Services. US7141589B2; 2006
  • Cornell Research Foundation, Inc. US5849687; 1998
  • Mertz PM, Ovington LG. Wound healing microbiology. Dermatol Clin 1993;11:739-47
  • Ward CG. Iron and immunologic function. J Burn Care Rehabil 1987;8:487-91
  • Williams A, Meyer D. Desferrioxamine as immunomodulatory agent during microorganism infection. Curr Pharm Des 2009;15:1261-68
  • Soteriadou K, Papavassiliou P, Voyiatzaki C, Effect of iron chelation on the in-vitro growth of leishmania promastigotes. J Antimicrob Chemother 1955;35:23-9
  • Fernandes SS, Nunes A, Gomes AR, Identification of a new hexadentate iron chelator capable of restricting the intramacrophagic growth of Mycobacterium avium. Microbes Infect 2010;12:287-94
  • Neupane GP, Kim DM. In vitro time-kill activities of ciprofloxacin alone and in combination with the iron chelator deferasirox against Vibrio vulnificus. Eur J Clin Microbiol Infect Dis 2010;29:407-10
  • Chan GC, Chan S, Ho PL, Effects of chelators (deferoxamine, deferiprone and deferasirox) on the growth of Klebsiella pneumoniae and Aeromonas hydrophila isolated from transfusion-dependent thalassemia patients. Hemoglobin 2009;33:352-60
  • Kim CM, Park RY, Choi MH, Ferrophilic characteristics of Vibrio vulnificus and potential usefulness of iron chelation therapy. J Infect Dis 2007;195:90-8
  • Das NK, Biswas S, Solanki S, Leishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth. Cell Microbiol 2009;11:83-94
  • Chen SC, Playford EG, Sorrell TC. Antifungal therapy in invasive fungal infections. Curr Opin Pharmacol 2010;10:522-30
  • Gupta AK. Ciclopirox: an overview. Int J Dermatol 2001;40:305-10
  • Rosen T, Schell BJ, Orengo I. Anti-inflammatory activity of antifungal preparation. Int J Dermatol 1997;36:788-92
  • Hanel H, Smith-Kurtz E, Pastowsky S. Therapy of seborrheic eczema with an antifungal agent with an antiphlogistic effect. Mycoses 1991;34:91-3
  • Lassus A, Nolting KS, Savopoulos C. Comparison of ciclopirox olamine 1% cream with ciclopirox 1%-hydrocortisone acetate 1% cream in the treatment of inflamed superficial mycoses. Clin Ther 1998;10:594-99
  • Eberhard Y, McDermott SP, Wang X, Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 2009;114:3064-073
  • Linden T, Katschinski DM, Ekhhardt K, The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis. FASEB J 2003;17:761-63
  • Unilever Patent Department. US20010046479A1; 2001
  • Unilever PLC London. EP1358800A1; 2003
  • Unilever Patent Department. US20040259951A1; 2004
  • Unilever Intellectual Property Group. US20050191255A1; 2005
  • New York University. US5462969; 1995
  • Unisearch Ltd. WO03078386A1; 2003
  • Biofrontera Discovery GMBH. WO2005051411A1; 2005
  • Los Angeles Biomedical Research Institute at Harhour-UCLA Medical Centerm. US20100129434A1; 2010
  • Canadt & Lorz LLP. US20100261695A1; 2010
  • Chiron Corp. WO2004060308A2; 2004
  • Huang X, Moir RD, Tanzi RE, Redox-active metals, oxidative stress, and Alzheimer's disease pathology. Ann NY Acad Sci 2004;1012:153-63
  • Amit T, Avramovich-Tirosh Y, Youdim MBH, Targeting multiple Alzheimer's disease etiologies with multimodal neuroprotective and neurorestorative iron chelators. FASEB J 2008;22:1296-305
  • Dedeoglu A, Cormier K, Payton S, Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis. Exp Gerontol 2004;39:1641-49
  • Youdim MBH, Fridkin M, Zheng H. Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 2005;126:317-26
  • Zhu W, Xie W, Pan T, Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 2007;21:3836-44
  • Gal S, Fridkin M, Amit T. M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson's disease. J Neural Transm Suppl 2006;70:447-56
  • Bar-Am O, Amit T, Weinreb O, Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-beta protein precursor: involvement of MAPK and PKC activation. J Alzheimers Dis 2010;21:361-71
  • Charkoudian LK, Pham DM, Franz KJ. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J Am Che Soc 2006;128:12424-25
  • Zheng H, Youdim MBH, Fridkin M. Site-activated multifunctional chelator with acetylcholine esterase and neuroprotective- neurorestor-ative moieties for Alzheimer's therapy. J Med Chem 2009:52:4095-98
  • Zhen H, Youdim MBH, Fridkin M. Site-activated chelators targeting acetylcholine esterase and monoamine oxidase for Alzheimer's therapy. Chem Biol 2010;5:603-10
  • Zheng H, Gal S, Weiner LM, Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 2005;95:68-78
  • Avramovich-Tirosh Y, Amit T, Bar-Am O, Therapeutic targets and potential of the novel brain- permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer's disease. J Neurochem 2007;100:490-02
  • Zheng H, Weiner LM, Bar-Am O, Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer's, Parkinson's, and other neurodegenerative diseases. Bioorg Med Chem 2005;13:773-83
  • Zheng H, Youdim MBH, Fridkin M. Selective acetylcholine esterase inhibitor activated by acetylcholine esterase releases an active chelator with neurorescuing and anti-amyloid activities. Neuroscience 2010;1:737-46
  • Mechlovich D, Amit T, Mandel SA, The novel multifunctional, iron-chelating drugs M30 and HLA20 protect pancreatic beta-cell lines from oxidative stress damage. J Pharmacol Exp Ther 2010;333:874-82
  • Dedeoglua A, Cormiera K, Paytonc S, Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis. Exp Gerontol 2004;39:1641-49
  • Scott LE, Orvig C. Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem Rev 2009;109:4885-910
  • Jin H, Randazzo J, Zhang P, Multifunctional antioxidants for the treatment of age-related diseases. J Med Chem 2010;53:1117-27
  • Zheng H, Blat D, Fridkin M. Novel neuroprotective neurotrophic NAP analogs targeting metal toxicity and oxidative stress: potential candidates for the control of neurodegenerative diseases. J Neural Transm Suppl 2006;71:163-72
  • Perez CA, Tong Y, Guo M. Iron chelators as potential therapeutic agents for Parkinson's disease. Curr Bioact Compd 2008;4:150-58
  • Health Partners Research Foundation. US20100061595A1; 2010
  • Delack EA. US20080003209A1; 2008
  • D-Pharma Ltd. WO2005016229A2; 2005
  • Fernandez-pol JA. US20040167204A1; 2004
  • Franz KJ. US20100004204A1; 2010
  • Avramovich-Tirosh Y, Bar-Am O, Amit, Up-regulation of hypoxia-inducible factor (HIF) -1alpha and HIF-target genes in cortical neurons by the novel multifunctional iron chelator anti-Alzheimer drug M30. Curr Alzheimer Res 2010;7:300-6
  • Weinreb O, Mandel S, Bar-Am O, Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer's disease drugs. Neurotherapeutics 2009;1:163-74
  • Zheng H, Youdim MBH, Fridkin M. Site-activated chelators targeting acetylcholine esterase and monoamine oxidase for Alzheimer's therapy. Chem Biol 2010;5:603-10
  • Yeda Research and Development Co. Ltd and Technion Research and Development Foundation. WO0074664A2; 2000
  • Technion Research and Development Foundation and Yeda Research and Development Co. Ltd. WO2004041151A2; 2004
  • Yeda Research and Development Co. Ltd and Technion Research and Development Foundation. US6855711B1; 2005
  • Technion Research and Development Foundation. US20050191348A1; 2005
  • Technion Research and Development Foundation. US20060234927A1; 2006
  • Yeda Research and Development Co. Ltd and Technion Research and Development Foundation. WO2010086860A2; 2010
  • Chronogen, Inc. WO2008014602A1; 2008
  • Miller MJ, Malouin F. The development of iron chelators for clinical use. In: Bergeron RJ, Brittenham GM, editors. CRC Press, Boca Raton; 1993. p. 275-306
  • Wencewicz TA, Mollmann U, Long TE, Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. BioMetals 2009;22:633-48
  • Mollmann U, Heinisch L, Bauernfeind A, Siderophores as drug delivery agents:application of the “Trojan Horse” strategy. BioMetals 2009;22:615-24
  • Ballouche M, Cornelis P, Baysee C. Iron metabolism: a promising target for antibacterial strategies. Rec Patents Anti Infect Drugs 2009;4:190-205
  • Wiles JA, Bradbury BJ, Pucci MJ. New quinolone antibiotics:a survey of the literature from 2005 to 2010. Expert Opin Ther Pat 2010;20:1295-319
  • Roosenberg JM II, Lin Y-M, Lu Y, Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 2000;7:159-97
  • Miller MJ, Malouin F. Microbial iron chelators as drug delivery agents:the rational design and synthesis of siderophore-drug conjugates. Acc Chem Res 1993;26:241-9
  • Heinisch L, Wittmann S, Stoiber T, Highly antibacterial active aminoacylpenicillin conjugates with bis-catecholate siderophores based on secondary diamino acids and related compounds. J Med Chem 2002;45:3022-40
  • Ghosh A, Miller MJ, De Clercq E, Synthesis and biological evaluation of a carbocyclic azanoraristeromycin siderophore conjugate. Nucleosides Nucleotides 1999;18:217-25
  • Lu Y, Miller MJ. Syntheses and studies of multiwarhead siderophore-5-fluorouridine conjugates. Org Med Chem 1999;7:3025-38
  • Bernier G, Girijavallabhan V, Murray A, Desketoneoenactin-siderophore conjugates for Candida:evidence of iron transport-dependent species selectivity. Antimicrob Agents Chemother 2005;49:241-48
  • Chu BC, Garcia-Herrero A, Johanson TH, Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view. Biometals 2010;23:601-11
  • Pramanik A, Stroeher UH, Krejci J, Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. Int J Med Microbiol 2007;297:459-69
  • Thomas X, Destoumieux-Garzon D, Peduzzi J, Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 2004;279:28233-242
  • Ding P, Schous CE, Miller MJ. Design and synthesis of a novel protected mixed ligand siderophore. Tet Lett 2008;49:2306-310
  • Heinisch L, Wittmann S, Stoiber T, Synthesis and biological activity of tris- and tetrakiscatecholate siderophores based on poly-aza alkanoic acids or alkylbenzoic acids and their conjugates with beta-lactam antibiotics. Arzneimittelforschung 2003;53:188-95
  • Mies KA, Gebhardt P, Mollmann U, Synthesis, siderophore activity and iron(III) chelation chemistry of a novel mono-hydroxamate, bis-catecholate siderophore mimic:Nalpha,-Nϵ-Bis[2,3-dihydroxybenzoyl]-L-lysyl-(gamma-N-methyl-N-hydroxyamido)-L-glutamic acid. J Inorg Biochem 2008;102:4850-61
  • Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep 2010;27:637-57
  • Ding P, Helquist P, Miller MJ. Design and synthesis of a siderophore conjugate as a potent PSMA inhibitor and potential diagnostic agent for prostate cancer. Bioorg Med Chem 2008;16:1648-657
  • Burnhan BF. Investigations on the action of the iron-containing growth factors, sideramines and iron containing antibiotics sideromycines. J Gen Microbiol 1963;32:117-21
  • Budzikiewicz H. Siderophore-antibiotic conjugates used as Torojean Horse against Pseudomonas aeruginosa. Curr Top Med Chem 2001;1:73-82
  • Ghosh A, Ghosh M, Niu C. Iron transport-mediated drug delivery using mixed-ligand siderophore-beta-lactam conjugates. Chem Biol 1996;3:1011-19
  • Ghosh M, Miller MJ. Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol and hydroxamate containing siderophore- vancomycin conjugates. Bioorg Med Chem 1996;4:43-8
  • Wittmann SM, Schnabelrauch I, Scherlitz-Hofmann U, New synthetic siderophores and their beta-lactam conjugates based on diaminoacids and dipeptides. Bioorg Med Chem 2002;10:1659-70
  • Bayer AG. EP0069882; 1985
  • Hoechst Aktiengesellschaft. EP0639583A1; 1993
  • M.S Hoechst India. IN176905; 1996
  • Gruenenthal GmbH. US20040132707A1; 2004
  • Gruenenthal GmbH. WO02070017A1; 2002
  • Gruenenthal GmbH. US6013647; 2000
  • National Research Development Corp. US4650793; 1987
  • Gruenenthal GmbH. WO02085841A2; 2002
  • Gruenenthal GmbH. US20040186087A1; 2004
  • Brechbeil MW. An improved synthesis of cis,cis-1,3,5-triaminocyclohexane. Synthesis of novel hexadecane ligand derivatives for the preparation of gallium radiopharmaceuticals. Bioorg Med Chem 1996;6:807-09
  • Torti SV, Torti FM, Whitman SP, Tumor cell cytotoxicity of a novel metal chelator. Blood 1998;92:1348-89
  • Wake Forest University, University of New Hampshire, National Institutes of Health. US6589966B1; 2003
  • University of Florida Research Foundation. WO2005023310A2; 2005
  • Research Corp. WO8600891; 1986
  • Available from: [email protected]
  • National Research Development Corpo. US5177068; 1989
  • The Regents of the University of California. US5624901; 1977
  • Shiva Biomedical, LLC. US20080293779A1; 2008
  • Epix Medical, Inc. WO9736619; 1997
  • The University of Virginia Patent Foundation. US6004986; 1999
  • Us Dept. Health and Human Services. US6156765; 2000
  • Panacea Pharrmaceuticals, Inc. WO2004099371A2; 2004
  • Novartis AG. US20100004303A1; 2010
  • New York University. WO2005115379A2; 2005
  • L' Oreal. WO02102345A2; 2002
  • Novartis AG. WO2009103727A2; 2009
  • Assistance Publique-Hopitaux de Paris. WO210092419A1; 2010
  • Pierce Biotechnology, Inc. US6670159B1; 2003
  • Marshall University Research Corp. US6509380A1; 2003
  • University of Utah Research Foundation. US7728038B2; 2010
  • Neuraxo Biopharmaceuticals GmbH. WO2007026028A2; 2007
  • Gwathmey, Inc. WO200606588A2; 2006
  • Shiva Biomedicals, LLC. US20050176887A1; 2005
  • Shah SV. US20060128805A1; 2006
  • Shah SV. US20070238760A1; 2006
  • Shiva Biomedicals, LLC. WO0065346; 2000
  • Dunalef JL. US20080279913A1; 2008
  • Glenmark Pharmaceuticals Ltd. US20080075745A1; 2008
  • Yadegari H, Jabbari A, Heli H, Electro-oxidation and determination of deferiprone on a glassy electrode. Chem Anal 2008;53:5-16
  • Hajjizadeh M, Jabbari A, Heli H, Electrocatalytic oxidation and determination of deferasirox and deferiprone on nickel oxyhydroxide-midified electrode. Anal Biochem 2008;373:337-48
  • Yadegari H, Jabbari A, Heli H, Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotubes-modified glassy electrode. Electrochimica Acta 2008;53:2907-16
  • Moosavi-Movahedi AA, Mousavy SJ, Divsalar A, The effects of deferiprone and deferasirox on the structure and function of beta-thalassemia hemoglobin. J Biomolecular Str Dynamics 2009;27:319-39
  • Hatcher HC, Singh RN, Torti FM, Synthetic and natural iron chelators:therapeutic potential and clinical use. Future Med Chem 2009;1:1643-70
  • Ba LA, Doering M, Burkholz T, Metal trafficking: from maintaining the metal homeostasis to future drug design. Roy Soc Chem Metallomics 2009;1:292-311
  • Available from: http://clinicaltrials.gov/ct2/results?term=iron+chelator

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.