423
Views
49
CrossRef citations to date
0
Altmetric
Reviews

New antibacterials for the treatment of toxoplasmosis; a patent review

&
Pages 311-333 | Published online: 10 Mar 2012

Bibliography

  • Luder CG, Bohne W, Soldati D. Toxoplasmosis: a persisting challenge. Trends Parasitol 2001;17:460-3
  • Innes EA. A brief history and overview of Toxoplasma gondii. Zoonoses Public Health 2010;57:1-7
  • Frenkel JK, Remington JS, Wong S–Y. Prevention of toxoplasma infection in pregnant women and their fetuses. Clin Infect Dis 1995;20:727-9
  • Tenter AM, Heckerost AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000;30:1217-58
  • Moreno SNJ, Li Z–H. Targeting the isoprenoid pathway of Toxoplasma gondii. Expert Opin Ther Targets 2008;12:253-63
  • Glatt AE, Chirgwin K, Landesman SH. Treatment of infections associated with human immunodeficiency virus. N Engl J Med 1988;318:1439-48
  • Yolken RH, Bachmann S, Ruslanova I, Antibodies to Toxoplasma gondii in individuals with first-episode schizophrenia. Clin Infect Dis 2001;32:842-4
  • Nicolle C. Manceaux, sur une infection A corps de leishman (ou organism voisin) du gondi. C R Hebd Seances Acad Sci 1908;147:763-6
  • Levine ND, Corliss JO, Cox FE, A newly revised classification of the protozoa. J Protozool 1980;27:37-58
  • Carruthers V, Boothroyd JC. Pulling together: an integrated model of Toxoplasma cell invasion. Curr Opin Microbiol 2007;10:83-9
  • Fichera ME, Roos DS. A plastid organelle as a drug target in apicomplexan parasites. Nature 1997;390:407-9
  • Stokkermans TJW, Schwartzman JD, Keenan K, Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides. Exp Parasitol 1996;84:355-70
  • Roberts F, Roberts CW, Johnson JJ, Evidence for the shikimate pathway in apicomplexan parasites. Nature 1998;393:801-5
  • Dubey JP, Linsday DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 1998;11:267-99
  • Georgiev V. Management of toxoplasmosis. Drugs 1994;48:179-88
  • Moreno SNJ, Docampo R. Calcium regulation in protozoan parasites. Curr Opin Microbiol 2003;6:359-64
  • Sabin AB, Warren J. Therapeutic effect of the sulfonamides on the infection with intracellular protozoa (Toxoplasma), J Bacteriol. 1941;41:80-6
  • Eyles DE, Coleman N. Synergistic effect of sulfadiazine and daraprim against toxoplasmosis in mice. Antibiot Chemother 1953;3:483-90
  • Beverly JKA. A rational approach to the treatment of Toxoplasma uveitis. Trans Ophtalmol Soc UK 1958;78:109-21
  • Chang HR, Pechere J-CF. Effect of roxithromycin on acute toxoplasmosis in mice. Antimicrob Agents Chemother 1987;31:1147-9
  • Chang HR, Pechere J-CF. In vivo effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii. Antimicrob Agents Chemother 1988;32:524-9
  • Garin JP, Eyles DE. Le traitement de la toxoplasmose experimentale de la souris par la spiramycine. Press Med 1958;66:957-8
  • Desmonts G, Couvreur J. Congenital toxoplasmosis. A prospective study of 378 pregnancies. N Engl J Med 1974;290:1110-16
  • Baggish AL, Hill DR. Antiparasitic agent atovaquone. Antimicrob Agents Chemother 2002;46:1163-73
  • Sun IL, Sun EE, Crane FL, Requirement for coenzyme Q in plasma membrane electron transport. Proc Natl Acad Sci USA 1992;89:11126-30
  • McFadden DC, Tomavo S, Berry EA, Boothroyd JC. Characterization of cytochrome b from Toxoplasma gondii and Q(o) domain mutations as a mechanism of atovaquone-resistance. Mol Biochem Parasitol 2000;108:1-12
  • Harris C, Salgo MP, Tanowitz HB, In vitro assessment of antimicrobial agents against Toxoplasma gondii. J Infect Dis 1988;157:14-22
  • Rytel MW, Jones TC. Introduction of interferon in mice infected with Toxoplasma gondii. Proc Soc Exp Biol Med 1966;123:859-62
  • Koo L, Young LH. Management of ocular toxoplasmosis. Int Ophtalmol Clin 2006;46:183-93
  • Avery MA, Alvim-Gaston M, Vroman JA, Structure-activity relationships of the antimalarial agent artemisinin. 7. Direct modification of (+)-artemisinin and in vivo antimalarial screening of new, potential preclinical antimalarial candidates. J Med Chem 2002;45:4321-35
  • Vroman JA, Alvim-Gaston M, Avery MA. Current progress in the chemistry, medicinal chemistry and drug design of artemisinin based antimalarials. Curr Pharm Des 1999;5:101-38
  • Ou-Yang K, Krug EC, Marr JJ, Inhibition of growth of Toxoplasma gondii by qinghaosu and derivatives. Antimicrob Agents Chemother 1990;34:1961-5
  • Chang HR, Pechere J-C. Arteether, a qinghaosu derivative, in toxoplasmosis. Trans R Soc Trop Med Hyg 1988;82:867
  • Jones-Brando L, D'Angelo J, Posner GH, In Vitro Inhibition of Toxoplasma gondii by four new derivatives of artemisinin. Antimicrob Agents Chemother 2006;50:4206-8
  • D'Angelo JG, Bordon C, Posner GH, Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle. J Antimicrob Chemother 2009;63:146-50
  • Brando LV, Posner GH, D'Angelo JG, Artemisinin derivatives. WO2008127381A2; 2008
  • Hencken CP, Jones-Brando L, Bordon C, Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii. J Med Chem 2010;53:3594-601
  • Posner GH. Endoperoxidases useful as antiparasitic agents. US5817962; 1998.
  • Haynes RK, Fugmann B, Stetter J, Artemisone−A highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed 2006;45:2082-8
  • Schmeer K, Wollborn U. Antiparasitic artemisinin derivatives. EP1714967A1; 2006
  • Posner GH, Woodard LE, Levine DR, Tioxane monomers and dimmers. WO2010135427; 2010
  • Woodard LE, Chang W, Chen X, Malaria-infected mice live until at least day 30 after a new monomeric trioxane combined with mefloquine are administered together in a single low oral dose. J Med Chem 2009;52:7458-62
  • Nagamune K, Beatty WL, Sibley DL. Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 2007;6:2147-56
  • Nagamune K, Moreno SNJ, Sibley DL. Artemisinin-resistant mutants of Toxoplasma gondii have altered calcium homeostasis. Antimicrob Agents Chemother 2007;51:3816-23
  • Kawase O, Nishikawa Y, Bannai H, Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii. Proteomics 2007;7:3718-25
  • O'Neill PM, Rawe SL, Borstnik K, Enantiomeric 1,2,4-trioxanes display equivalent in vitro antimalarial activity versus Plasmodium falciparum malaria parasites: implications for the molecular mechanism of action of the artemisinins. ChemBioChem 2005;6:2048-54
  • O'Neill PM, Posner GH. A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 2004;47:2945-64
  • Urbina JA. Parasitological cure of Chagas disease: is it possible? Is it relevant? Mem Inst Oswaldo Cruz 1999;94(Suppl 1):349-55
  • Docampo R, Moreno SN. Bisphosphonates as chemotherapeutic agents against trypanosomatid and apicomplexan parasites. Curr Drug Targets Infect Disord 2001;1:51-61
  • Docampo R, Moreno SNJ. The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Curr Pharm Des 2008;14:882-8
  • Gelb MH, Van Voorhis WC, Buckner FS, Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Mol Biochem Parasitol 2003;726:155-63
  • Eberl M, Hintz M, Reichenberg A, Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett 2003;544:4-10
  • Garcia Linares G, Ravaschino EL, Rodriguez JB. Progresses in the field of drug design to combat tropical protozoan Parasitic diseases. Curr Med Chem 2006;13:335-60
  • Dantas-Leite L, Urbina JA, De Souza W, Selective anti-Toxoplasma gondii activities of azasterols. Int J Antimicrob Agents 2004;23:620-6
  • Urbina JA, Vivas J, Lazardi K, Antiproliferative effects of Delta24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: In vitro and in vivo studies. Chemotherapy 1996;42:294-307
  • Rodrigues JCF, Attias M, Rodriguez C, Ultrastructural and biochemical alterations induced by 22,26-azasterol, a Delta24(25)-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Antimicrob Agents Chemother 2002;46:487-99
  • Urbina JA, Visbal G, Contreras LM., Inhibitors of Delta24(25)-Sterol methyltransferase block sterol synthesis and cell proliferation in Pneumocystis carinii. Antimicrob Agents Chemother 1997;41:1428-32
  • Dantas-Leite L, Urbina JA, De Souza W, Antiproliferative synergism of azasterols and antifolates against Toxoplasma gondii. Int J Antimicrob Agents 2005;25:130-5
  • Roelofs AJ, Thompson K, Ebetino FH, Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des 2010;16:2950-60
  • Reszka AA, Rodan GA. Nitrogen-containing bisphosphonate mechanism of action. Mini Rev Med Chem 2004;4:711-17
  • Reszka AA, Rodan GA. Mechanism of action of bisphosphonates. Curr Osteoporos Rep 2003;1:45-52
  • Fleisch H, Russell RGG, Straumann F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 1966;212:901-3
  • Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969;165:1262-4
  • Francis MD, Russell RGG, Fleisch H. Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 1969;165:1264-6
  • Urbina JA, Moreno B, Vierkotter S, Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J Biol Chem 1999;274:33609-15
  • Hughes DE, Wright KR, Uy HL, Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995;10:1478-87
  • Rogers MJ, Frith JC, Luckman SP, Molecular mechanisms of action of bisphosphonates. Bone 1999;24:73S-9S
  • Kavanagh KL, Guo K, Dunford JE, The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci 2006;103:7829-34
  • Hosfield DJ, Zhang Y, Dougan DR, Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J Biol Chem 2004;279:8526-9
  • Dunford JE, Thompson K, Coxon FP, Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 2001;296:235-42
  • Coxon FP, Thompson K, Rogers MJ. Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol 2006;6:307-12
  • Reddy R, Dietrich E, Lafontaine Y, Bisphosphonated benzoxazinorifamycin prodrugs for the prevention and treatment of osteomyelitis. ChemMedChem 2008;3:1863-8
  • Clezardin P, Massaia M. Nitrogen-containing bisphosphonates and cancer immunotherapy. Curr Pharm Des 2010;16:3007-14
  • Miller K, Erez R, Segal E., Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer–alendronate–taxane conjugate. Angew Chem Int Ed 2009;48:2949-54
  • Coleman RE. Risks and benefits of bisphosphonates. Br J Cancer 2008;98:1736-40
  • Roth AG, Drescher D, Yang Y, Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem Int Ed 2009;48:7560-3
  • Ghosh S, Chan JMW, Lea CR, Effects of bisphosphonates on the growth of Entamoeba histolytica and plasmodium species in vitro and in vivo. J Med Chem 2004;47:175-87
  • Martin MB, Grimley JS, Lewis JC, Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J Med Chem 2001;44:909-16
  • Yardley V, Khan AA, Martin MB, In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii. Antimicrob Agents Chemother 2002;46:929-31
  • Martin MB, Sanders JM, Kendrick H, Activity of bisphosphonates against Trypanosoma brucei rhodesiense. J Med Chem 2002;45:2904-14
  • Rosso VS, Szajnman SH, Malayil L, Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2011;19:2211-17
  • Szajnman SH, Garcia Linares GE, Li Z–H, Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg Med Chem 2008;16:3283-90
  • Szajnman SH, Bailey BN, Docampo R, Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi. Bioorg Med Chem Lett 2001;11:789-92
  • Szajnman SH, Montalvetti A, Wang Y, Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. Bioorg Med Chem Lett 2003;13:3231-5
  • Szajnman SH, Ravaschino EL, Docampo R, Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase. Bioorg Med Chem Lett 2005;15:4685-90
  • Ling Y, Sahota G, Odeh S, Bisphosphonate inhibitors of Toxoplasma gondii growth: in vitro, QSAR, and in vivo investigations. J Med Chem 2005;48:3130-40
  • Ling Y, Li Z–H, Miranda K, The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates. J Biol Chem 2007;282:30804-16
  • Szajnman SH, Rosso VS, Malayil L, Design, synthesis and biological evaluation of 1-(Fluoroalkylidene)-1,1-bisphosphonic Acids against Toxoplasma gondii targeting farnesyl diphosphate synthase. Org Biomol Chem 2012;10:1424-33
  • Jeanmougin F, Thompson JD, Gouy M, Multiple sequence alignment with Clustal X. Trends Biochem Sci 1998;23:403-5
  • Cinque GM, Szajnman SH, Zhong L, Structure-activity relationship of new growth inhibitors of Trypanosoma cruzi. J Med Chem 1998;41:1540-54
  • Szajnman SH, Yan W, Bailey BN, Design and synthesis of aryloxyethyl thiocyanate derivatives as potent inhibitors of Trypanosoma cruzi proliferation. J Med Chem 2000;43:1826-40
  • Elhalem E, Bailey BN, Docampo R, Design, synthesis and biological evaluation of aryloxyethyl thiocyanate derivatives against Trypanosoma cruzi. J Med Chem 2002;45:3984-99
  • Urbina JA, Concepcion JL, Montalvetti A, Mechanism of action of 4-phenoxyphenoxy derivatives against Trypanosoma cruzi, the causative agent of Chagas disease. Antimicrob Agents Chemother 2003;47:2047-50
  • Martins-Duarte ES, Urbina JA, de Souza W, Antiproliferative activities of two novel quinuclidine inhibitors against Toxoplasma gondii tachyzoites in vitro. J Antimicrob Chemother 2006;58:59-65
  • Garcia Linares G, Gismondi S, Osa Codesido N, Fluorine-containing aryloxyethyl thiocyanate derivatives are potent inhibitors of Trypanosoma cruzi and Toxoplasma gondii proliferation. Bioorg Med Chem Lett 2007;17:5068-71
  • Blaney JM, Hansch C, Silipo C, Structure-activity relationships of dihydrofolate reductase inhibitors. Chem Rev 1984;84:333-407
  • Zuccotto F, Martin ACR, Laskowski RA, Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. J Comput Aided Mol Des 1998;12:241-57
  • Gangjee A, Lin X, Queener SF. Design, synthesis, and biological evaluation of 2,4-diamino-5-methyl-6-substituted-pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors. J Med Chem 2004;47:3689-92
  • Rosowsky A, Forsch RA. 2,4-diamino-5-[5'-substituted-benzyl] pyrimidines and 2,4-diamino-6-[5'-substituted-benzyl]quinazolines. WO2004082613A2; 2004
  • Rosowsky A, Forsch RA, Hopkins Sibley C, New 2,4-diamino-5-(2',5'-substituted benzyl)pyrimidines as potential drugs against opportunistic infections of AIDS and other immune disorders. Synthesis and species-dependent antifolate activity. J Med Chem 2004;47:1475-86
  • Rosowsky A, Forsch RA, Queener SF. Further studies on 2,4-diamino-5-(2',5'-disubstituted benzyl)pyrimidines as potent and selective inhibitors of dihydrofolate reductases from three major opportunistic pathogens of AIDS. J Med Chem 2003;46:1726-36
  • Chan DC, Fu H, Forsch RA, Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with omega-carboxyalkoxy or omega-carboxy-1-alkynyl substitution in the side chain. J Med Chem 2005;48:4420-31
  • Popov VM, Yee WA, Anderson AC. Towards in silico lead optimization: scores from ensembles of protein/ligand conformations reliably correlate with biological activity. Proteins 2007;66:375-87
  • Anderson A, Wright DL, Pelphrey PM, Inhibitors of dihydrofolate reductase with antibacterial, antiprotozoal, antifungal and anticancer properties. WO2009025919A2; 2009
  • Pelphrey PM, Popov VM, Joska TM, Highly efficient ligands for dihydrofolate reductase from Cryptosporidium hominis and Toxoplasma gondii inspired by structural analysis. J Med Chem 2007;50:940-50
  • Gangjee A, Qiu Y, Li W, Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine antifolates. J Med Chem 2008;51:5789-97
  • Johnson EF, Hinz W, Atreya CE, Mechanistic characterization of Toxoplasma gondii thymidylate synthase (TS-DHFR)-dihydrofolate reductase. J Biol Chem 2002;277:43126-36
  • Gangjee A, Li W, Kisliuk RL, Design, synthesis, and X-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents. J Med Chem 2009;52:4892-902
  • Gangjee A, Matherly LH. Selective proton coupled folate transporter and folate receptor, and garftase inhibitor compounds and methods of using the same. US20100081676A1; 2010
  • Gangjee A. Substituted pyrrolo[2,3-d]pyrimidines for selectively targeting tumor cells with FR type receptors. US7981902 B2; 2011
  • Deligny M, Saidani N, Bonneau A–L, Compounds with antiparasitic activity, applications thereof to the treatment of infectious diseases caused by apicomplexans. WO2008146172A2; 2008
  • el Kouni MH. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy. Curr Pharm Des 2007;13:581-97
  • Krug EC, Marr JJ, Berens BL. Purine metabolism in Toxoplasma gondii. J Biol Chem 1989;264:10601-7
  • Schumacher MA, Scott DM, Mathews II, Crystal structure of Toxoplasma gondii reveals a novel catalytic mechanism and prodrug binding. J Mol Biol 2000;298:875-93
  • Mathews II, Erion MD, Ealick SE. Structure of human adenosine kinase at 1.5 A resolution. Biochemistry 1998;37:15607-20
  • Kim YA, Sharon A, Chu CK, Synthesis, biological evaluation and molecular modelling studies of N6-benzyladenosine analogues as potential toxoplasma agents. Biochem Pharmacol 2007;73:1558-72
  • Kim YA, Sharon A, Chu CK, Structure-activity relationships of 7-deaza-6-benzylthioinosine analogues as ligands of Toxoplasma gondii adenosine kinase. J Med Chem 2008;51:3934-45
  • Al Safarjalani ON, Rais RH, Kim YA, 7-Deaza-6-benzylthioinosine analogues as subversive substrate of Toxoplasma gondii adenosine kinase: activities and selective toxicities. Biochem Pharmacol 2008;76:958-66
  • Al Safarjalani ON, Rais RH, Kim YA, Carbocyclic 6-benzylthioinosine analogues as subversive substrates of Toxoplasma gondii adenosine kinase: biological activities and selective toxicities. Biochem Pharmacol 2010;80:955-63
  • Kim YA, Rawal RK, Yoo J, Structure–activity relationships of carbocyclic 6-benzylthioinosine analogues as subversive substrates of Toxoplasma gondii adenosine kinase. Bioorg Med Chem 2010;18:3403-12
  • el Kouni MH, Guarcello V, Naguib FNM. Treatment of toxoplasmosis. US5773424; 1998
  • Fichera ME, Roos DS. A plastid organelle as a drug target in apicomplexan parasites. Nature 1997;390:407-9
  • Baird JK. Drugs therapy: effectiveness of antimalarial drugs. N Engl J Med 2005;352:1565-77
  • Pfefferkorn ER, Borotz SE. Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, roxithromycin, spiramycin, or clindamycin. Antimicrob Agents Chemother 1994;38:31-7
  • Araujo FG, Shepard RM, Remington JS. In vivo activity of the macrolide antibiotics azithromycin, roxithromycin, ans spiramycin against Toxoplasma gondii. Eur J Clin Microbiol 1991;10:519-24
  • Lee Y, Choi JY, Fu H, Chemistry and biology of macrolide antiparasitic agents. J Med Chem 2011;54:2792-804
  • Fichera ME, Bophale MK, Roos DS. In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents Chemother 1995;39:1530-7
  • Bell A, Monaghan P, Page AP. Peptidyl-prolyl cis–trans isomerases (immunophilins) and their roles in parasite biochemistry, host–parasite interaction and antiparasitic drug action. Int J Parasitol 2006;36:261-76
  • Adams B, Musiyenko A, Kumar R, A novel class of dual-family immunophilins. J Biol Chem 2005;280:24308-14
  • Remington JS, Araujo FG. Treatment for toxoplasmosis with a composition comprising a macrolide antibiotic and a spiropiperidyl derivative of rifamycin S. US5648345; 1997
  • Darkin–Rattray SJ, Gurnett AM, Myers RW, Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 1996;93:13143-7
  • Gissot M, Kelly KA, Ajioka JW, Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. PLoS Pathog 2007;3:e77
  • Saksouk N, Bhatti MM, Kieffer S, Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol Cell Biol 2005;25:10301-14
  • Singh SB, Zink DL, Polishook JD, Apicidins: novel cyclic tetrapeptides as coccidiostats and antimalarial agents from fusarium pallidoroseum. Tetrahedron Lett 1996;37:8077-80
  • Meinke PT, Liberator P. Histone deacetylase: a target for antiproliferative and antiprotozoal agents. Curr Med Chem 2001;8:211-35
  • Singh SB, Zink DL, Liesch JM, Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal alpha-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem 2002;67:815-25
  • Singh SB, Zink DL, Liesch JM, Structure, histone deacetylase, and antiprotozoal activities of apicidins B and C, congeners of apicidin with proline and valine substitutions. Org Lett 2011;3:2815-18
  • Cannova CL, Dambrowski AW, Goetz MA, Antiprotozoal cyclic tetrapeptides. US5861375; 1999
  • Meinke PT, Schmatz D, Fisher MH, Apicidin-derived cyclic tetrapeptides. WO0107042A1; 2001
  • Liesch JM, Sweely CC, Stafeld GD. Structure of HC-toxin, a cyclic tetrapeptide from Helminthosporium carbonum. Tetrahedron 1982;38:45-8
  • Mori H, Urano Y, Abe F, FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 2003;56:72-9
  • Xie W, Zou B, Pei D, Total synthesis of cyclic tetrapeptide FR235222, a potent immunosuppressant that inhibits mammalian histone deacetylases. Org Lett 2005;7:2775-7
  • Bougdour A, Maubon D, Baldacci P, Drug inhibition of HDAC3 and epigenetic control of differentiation in apicomplexa parasites. J Exp Med 2009;206:953-66
  • Maubon D, Bougdour A, Wong Y–S, Activity of the histone deacetylase inhibitor FR235222 on Toxoplasma gondii: inhibition of stage conversion of the parasite cyst form and study of new derivative compounds. Antimicrob Agents Chemother 2010;54:4843-50
  • Wong Y–S, Hakimi M–A, Bougdour A, Cyclic peptides with anti-parasitic activity. WO2010116985A1; 2010
  • Billker O, Lourido S, Sibley LD. Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 2009;5:612-22
  • Ojo KK, Larson ET, Keyloun KR, Toxoplasma gondii calciumdependent protein kinase 1 is a target for selective kinase inhibitors. Nat Struct Mol Biol 2010;17:602-7
  • Zhang C, Kenski DM, Paulson JL, A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nat Methods 2005;2:435-41
  • Bishop AC, Kung C–Y, Shah K, Generation of monospecific nanomolar tyrosine kinase inhibitors via a chemical genetic approach. J Am Chem Soc 1999;121:627-31
  • Murphy RC, Ojo KK, Larson ET, Discovery of potent and selective inhibitors of CDPK1 from C. parvum and T. gondii. ACS Med Chem Lett 2010;1:331-5
  • Johnson SM, Murphy RC, Geiger JA, Development of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) inhibitors with potent anti-toxoplasma activity. J Med Chem 2012; DOI: 10.1021/jm201713h
  • Van Voorhis WC, Hol WGJ, Larson ET, Composition and methods for treating toxoplasmosis, cryptosporidiosis and other apicomplexan protozoan related diseases. WO2011094628A1; 2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.